灰铸铁缺陷及预防措施.doc_第1页
灰铸铁缺陷及预防措施.doc_第2页
灰铸铁缺陷及预防措施.doc_第3页
灰铸铁缺陷及预防措施.doc_第4页
灰铸铁缺陷及预防措施.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.常见铸件缺陷及其预防措施常见铸件缺陷及其预防措施(序+缺陷名称+缺陷特征+预防措施) 1 气孔 在铸件内部、表面或近于表面处,有大小不等的光滑孔眼,形状有圆的、长的及不规则的,有单个的,也有聚集成片的。颜色有白色的或带一层暗色,有时覆有一层氧化皮。 降低熔炼时流言蜚语金属的吸气量。减少砂型在浇注过程中的发气量,改进铸件结构,提高砂型和型芯的透气性,使型内气体能顺利排出。 2 缩孔 在铸件厚断面内部、两交界面的内部及厚断面和薄断面交接处的内部或表面,形状不规则,孔内粗糙不平,晶粒粗大。 壁厚小且均匀的铸件要采用同时凝固,壁厚大且不均匀的铸件采用由薄向厚的顺序凝固,合理放置冒口的冷铁。 3 缩松 在铸件内部微小而不连贯的缩孔,聚集在一处或多处,晶粒粗大,各晶粒间存在很小的孔眼,水压试验时渗水。 壁间连接处尽量减小热节,尽量降低浇注温度和浇注速度。 4 渣气孔 在铸件内部或表面形状不规则的孔眼。孔眼不光滑,里面全部或部分充塞着熔渣。 提高铁液温度。降低熔渣粘性。提高浇注系统的挡渣能力。增大铸件内圆角。 5 砂 眼 在铸件内部或表面有充塞着型砂的孔眼。 严格控制型砂性能 和造型操作,合型前注意打扫型腔。 6 热 裂 在铸件上有穿透或不穿透的裂纹(注要是弯曲形的),开裂处金属表皮氧化。 严格控制铁液中的 S、P含量。铸件壁厚尽量均匀。提高型砂和型芯的退让性。浇冒口不应阻碍铸件收缩。避免壁厚的突然改变。开型不能过早。不能激冷铸件。 7 冷 裂 在铸件上有穿透或不穿透的裂纹(主要是直的),开裂处金属表皮氧化。 8 粘 砂 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙。 减少砂粒间隙。适当降低金属的浇注温度。提高型砂、芯砂的耐火度。 9 夹 砂 在铸件表面上,有一层金属瘤状物或片状物,在金属瘤片和铸件之间夹有一层型砂。 严格控制型砂、芯砂性能。改善浇注系统,使金属液流动平稳。大平面铸件要倾斜浇注。 10 冷 隔 在铸件上有一种未完全融合的缝隙或洼坑,其交界边缘是圆滑的。 提高浇注温度和浇注速度。改善浇注系统。浇注时不断流。 11 浇不到 由于金属液未完全充满型腔而产生的铸件缺肉。 提高浇注温度和浇注速度。不要断流和防止跑火。夹砂、鼠尾、沟槽形成原因:1)金属流股的热量在被烘烤的砂型表层形成低强度高湿度水份凝聚层,翘起的砂层体积增大由两边向金属流股延伸。金属液充满型腔后未能将翘起的砂层压平,就形成鼠尾。 2)在充型金属液的热作用下,型腔上表面或下表面膨胀拱起的砂层未开裂或裂口较小,使金属液未能进入拱起砂层背面的空腔内,形成沟槽。沟槽实际是夹砂结疤的早期阶段。 3)铸件上表面夹砂结疤称为上型面夹砂结疤,由下型面沟槽发展变化而成。 4)铸件下表面的夹砂结疤称为下型面夹砂结疤,其形成有二:一种似鼠尾,但砂层翘曲程度和铸件表面凹陷程度比鼠尾严重,由鼠尾发展变化而成,称为夹砂结疤;另一种类似上型面夹砂结疤,由两平行金属流股间的下型面表层拱起开裂而成。 5)出现在铸造的铸件内角和外角的夹砂结疤称为角部夹砂结疤,由位于角部的上、下型面表层膨胀翘曲,脱离水分凝聚层伸入型腔所致。 6)湿型铸造的铸件上表面或下表面为大平面,型砂膨胀率大,湿强度低,水份过多,透气性差,铸型排气不良,浇注温度过高,浇注时间过长,易产生夹砂类废品。防止方法:1)降低砂型的膨胀应力,加入:煤粉、沥青、重油、木粉、等补偿砂粒膨胀降低膨胀应力。 2)提高型砂湿强度 提高煤粉的加入量到5%,增加型砂热变形量。 提高膨润土加入量到7.5%,增加型砂热湿拉强度。 3)提高透气性,加强排气孔通气。 4)用干型、自硬砂代替湿型。 5)适当降低浇注温度,缩短浇注时间。 6)浇注过程中对砂型吹气冷却。 7)铸造工艺修改。球铁皮下气孔对策影响因素(1)碳当量:适当增加含硅量有助于皮下气孔的减少。同时,在硅量保持不变的情况下,随着含碳量的增加,球铁中皮下气孔的个数呈现出单峰曲线,且峰值点总保持在共晶点左右,因此,最好将碳硅含量选择得高一些,以使球铁的碳当量稍大于共晶点。(2)硫:硫高会引起皮下气孔等缺陷,这是因为产生2气体而形成。当含硫量超过0 .094%时就会产生皮下气孔,含硫量越高,情况越严重。(3)稀土:铁液中加入稀土元素能脱氧、脱硫,提高铁液表面张力,因此有利于防止产生皮下气孔。但稀土含量太高,会增加铁液中氧化物的含量,使气泡外来核心增加,皮下气孔率增加。残余稀土量应控制在0. 043%以下。(4)镁:过高的镁将会加剧铁液的吸氢倾向,大量的镁气泡和氧化物进入型腔,增加气泡的外来核心;此外镁蒸汽直接与砂型中的水分作用,产生烟气及氢气,也会产生皮下气孔。试验表明,残镁量大于0 .05%后便易出现皮下气孔,残镁越高越严重。因此在保证球化基础上,尽量降低残留镁量。(5)铝:铁液中的铝是铸件产生氢气孔的主要原因。据报道,当湿型铸造球墨铸铁的残留铝量为 0.030%0 .050%时,将产生皮下气孔。E.R.Kaczmarek等人研究认为,铁液与铸型中的水反应生成与2,由于铝的脱氧作用,又生成23,其即为气泡生成的核心而又能吸附一定的气体,增加了球铁产生皮下气孔的倾向。但是在减少渣中的成分时,镁的存在使得铝显得多余,故铝的敏感含量是有一定范围的。(6)壁厚:皮下气孔还有“壁厚效应”特征,即气孔的产生在一定壁厚范围内,实际上这与铸件的凝固速度有关。铸件壁厚大时,其凝固结皮时间推迟,有利于气泡逸出。因此,一般来说壁厚小于6或大于25时不易产生皮下气孔。(7)浇注温度:浇注温度类似于壁厚效应,也有一个温度范围,在12851304时,皮下气孔相当严重。笔者进一步研究认为,不同的壁厚其危险温度也不相同,因此,应根据铸件壁厚共同确定浇注温度。当然,提高浇注温度能延缓氧化膜的生成,防止熔渣进入型腔,同时对砂型烘烤时间加长使水分向外迁移。(8) 型砂含水率:铸型产生皮下气孔的倾向按下列顺序依次减小:湿型、干型、水玻璃型、壳型。司乃潮的研究也证明了这一点,即随着型砂水分的提高,球铁产生皮下气孔的倾向增大,而当型砂水分小于4 .8%时,皮下气孔率接近于零。(9)型砂紧实度与透气性:型砂的透气性太低,导致型壁所产生的气体不能排出型外,而向金属侵入,致使铸件产生气孔;随着型砂紧实度的增加,皮下气孔的倾向也加大,但当紧实度相当高时,倾向又减小,这可能是由于表层砂紧实度高,增大了水分向铸件方向的迁移阻力,但若型砂水分也高,将使水蒸气爆炸的可能性增加。(10)浇冒口:合理设计浇冒口,使铁液平稳浇注,并具有较强的挡渣功能;同时,适当增加直浇道和冒口的高度,以增加金属液的静压力。2防止措施(1)严格控制铁液化学成分,使碳当量稍大于共晶点成分,含硫量不大于0 .094%;残余稀土小于0.043%;残留镁含量不大于0.05%;铝含量在0.03%0.05%范围以外。(2)合理设计铸件结构,使壁厚不小于25;根据壁厚确定浇注温度,薄壁小件不得小于1320;中件不得小于1300;大件不得小于1280。(3)金属炉料、孕育剂和所用工具应干燥,表面无锈蚀和油污。同时型砂水分不宜过高,尽量小于4.8%,煤粉、重油等发气物质的含量要适当控制,减少粘土含量,并可附加一些增加透气性的物质,如木屑等。(4)合理设计浇注系统,使之为开放式,可在型腔的最高处设置出气孔,同时应保证浇冒口高度,以提高液态金属的静压力。缩孔缩松影响因素 (1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。此外,提高碳当量还可提高球铁的流动性,有利于补缩。但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。 (2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。一般工厂控制含磷量小于0 08%。 (3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。 (4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。 (5)温度:浇注温度高,有利于补缩,但太高会增加液态收缩量,对消除缩孔、缩松不利,所以应根据具体情况合理选择浇注温度,一般以13001350为宜。 (6)砂型的紧实度:若砂型的紧实度太低或不均匀,以致浇注后在金属静压力或膨胀力的作用下,产生型腔扩大的现象,致使原来的金属不够补缩而导致铸件产生缩孔缩松。 (7)浇冒口及冷铁:若浇注系统、冒口和冷铁设置不当,不能保证金属液顺序凝固;另外,冒口的数量、大小以及与铸件的连接当否,将影响冒口的补缩效果。 1.2防止措施 (1)控制铁液成分:保持较高的碳当量(3 9%);尽量降低磷含量(0 08%);降低残留镁量(0 07%);采用稀土镁合金来处理,稀土氧化物残余量控制在0 02%0 04%。 (2)工艺设计要确保铸件在凝固中能从冒口不断地补充高温金属液,冒口的尺寸和数量要适当,力求做到顺序凝固。 (3)必要时采用冷铁与补贴来改变铸件的温度分布,以利于顺序凝固。 (4)浇注温度应在13001350,一包铁液的浇注时间不应超过25,以免产生球化衰退。 (5)提高砂型的紧实度,一般不低于90;撞砂均匀,含水率不宜过高,保证铸型有足够的刚度。 2夹渣 2 .1影响因素 (1)硅:硅的氧化物也是夹渣的主要组成部分,因此尽可能降低含硅量。 (2)硫:铁液中的硫化物是球铁件形成夹渣缺陷的主要原因之一。硫化物的熔点比铁液熔点低,在铁液凝固过程中,硫化物将从铁液中析出,增大了铁液的粘度,使铁液中的熔渣或金属氧化物等不易上浮。因而铁液中硫含量太高时,铸件易产生夹渣。球墨铸铁原铁液含硫量应控制在0 06%以下,当它在0 09%0 135%时,铸铁夹渣缺陷会急剧增加。 (3)稀土和镁:近年来研究认为夹渣主要是由于镁、稀土等元素氧化而致,因此残余镁和稀土不应太高。 (4)浇注温度:浇注温度太低时,金属液内的金属氧化物等因金属液的粘度太高,不易上浮至表面而残留在金属液内; 温度太高时,金属液表面的熔渣变得太稀薄,不易自液体表面去除,往往随金属液流入型内。而实际生产中,浇注温度太低是引起夹渣的主要原因之一。此外,浇注温度的选取还应考虑碳、硅含量的关系。 (5)浇注系统:浇注系统设计应合理,具有挡渣功能,使金属液能平稳地充填铸型,力求避免飞溅及紊流。 (6)型砂:若型砂表面粘附有多余的砂子或涂料,它们可与金属液中的氧化物合成熔渣,导致夹渣产生;砂型的紧实度不均匀,紧实度低的型壁表面容易被金属液侵蚀和形成低熔点的化合物,导致铸件产生夹渣。 2.2防止措施 (1)控制铁液成分:尽量降低铁液中的含硫量(0 06%), (2)熔炼工艺:要尽量提高金属液的出炉温度,适宜的镇静,以利于非金属夹杂物的上浮、聚集。扒干净铁液表面的渣子,铁液表面应放覆盖剂(珍珠岩、草木灰等),防止铁液氧化。选择合适的浇注温度,最好不低于1350。 (3)浇注系统要使铁液流动平稳,应设有集渣包和挡渣装置(如滤渣网等),避免直浇道冲砂。 (4)铸型紧实度应均匀,强度足够;合箱时应吹净铸型中的砂子。 3石墨漂浮 3. 1影响因素 (1)碳当量:碳当量过高,以致铁液在高温时就析出大量石墨。由于石墨的密度比铁液小,在镁蒸汽的带动下,使石墨漂浮到铸件上部。碳当量越高,石墨漂浮现象越严重。应当指出,碳当量太高是产生石墨漂浮的主要原因,但不是唯一原因,铸件大小、壁厚也是影响石墨漂浮的重要因素。 (2)硅:在碳当量不变的条件下,适当降低含硅量,有助于降低产生石墨漂浮的倾向。 (3)稀土:稀土含量过少时,碳在铁液中的溶解度会降低,铁液将析出大量石墨,加重石墨漂浮。 (4)球化温度与孕育温度:为了提高镁及稀土元素的吸收率,国内试验研究表明,球化处理时最适当的铁液温度是13801450。在此温度区间,随着温度升高,镁和稀土的吸收率增加。 (5)浇注温度:一般情况下,浇注温度越高,出现石墨漂浮的倾向越大,这是因为铸件长时间处于液态有利于石墨的析出。若缩短凝固时间,随着浇注温度升高,石墨漂浮倾向降低。 (6)滞留时间:孕育处理后至浇注完毕之间的停留时间太长,为石墨的析出提供了条件,一般这段时间应控制在10以内。 3 2防止措施 (1)控制铁液成分:严格控制碳当量,不得大于4 6%;铁液的含碳量不得大于4 0%,可用废钢来调整铁液的含碳量;采用低硅(3 9%);尽量降低磷含量(0 08%);降低残留镁量(76,碳当量为4.3%4 .35%。 (2)硫:当铁液中的含硫量太高时,硫与镁和稀土生成硫化物,因其密度小而上浮到铁液表面,而这些硫化物与空气中的氧发生反应生成硫,硫又回到铁液,又重复上述过程,从而降低了镁与稀土含量。当铁液中的硫大于0.1%时,即使加入多量的球化剂,也不能使石墨完全球化。 (3)稀土与镁:稀土与镁含量过低时,往往产生球化不良或球化衰退现象。一般工厂要求球化剂的加入量为1.8%2.2%。 (4)壁厚:铸件壁太厚也容易产生球化不良及衰退缺陷,主要是因为铁液在铸型中长时间处于液态,镁蒸汽上浮,造成镁含量降低;共晶时大量石墨生成而释放出的结晶潜热使奥氏体壳重新熔化,石墨伸出壳外而畸形长大,形成非球状石墨。 (5)温度:若铁液温度过高,铁液氧化严重,由于镁与稀土易与氧化物产生还原反应,而使得镁、稀土含量降低,同时高温也将增加镁的烧损和蒸发;铁液温度太低,球化剂不能熔化和被铁液吸收,而上浮至铁液表面燃烧或被氧化。 (6)滞留时间:铁液中镁的含量是随孕育处理后停留时间的增加而减少,其主要原因是因硫及镁、稀土的氧化与蒸发造成的。一般情况下,滞留时间不超过20min。 (7)浇冒口:浇冒口若设计不合理,会产生浇注时间太长、铁液飞溅以及卷入空气,使镁、稀土氧化严重。 5.2防止措施 (1)严格控制铁液成分:选择合适的碳当量;铁液中的含硫量应小于0 08%(其中生铁含硫不得大于0 03%,焦碳含硫不得大于0 08%),可采用小苏打进行脱硫。 (2)加入足够的球化剂, (3)合理设计铸件结构,避免壁厚过大,也可在壁厚处加冷铁以提高凝固速度,缩短液态时间,从而防止球化衰退及不良。 (4)注意处理温度。出炉温度应低于1460,以防球化剂严重烧损;要防止高温下的氧化现象,盖好覆盖球化剂的铁板(厚度应3);铁液扒渣后应用草木灰等盖好;当铁液温度1350出现球化不良及衰退时,可补加球化剂;而当 铸造技术支持 铸造铸件常见缺陷分析铸造工艺过程复杂,影响铸件质量的因素很多,往往由于原材料控制不严,工艺方案不合理,生产操作不当,管理制度不完善等原因,会使铸件产生各种铸造缺陷。常见的铸件缺陷名称、特征和产生的原因,见表。常见铸件缺陷及产生原因缺陷名称特征产生的主要原因气孔在铸件内部或表面有大小不等的光滑孔洞炉料不干或含氧化物、杂质多;浇注工具或炉前添加剂未烘干;型砂含水过多或起模和修型时刷水过多;型芯烘干不充分或型芯通气孔被堵塞;春砂过紧,型砂透气性差;浇注温度过低或浇注速度太快等缩孔与缩松缩孔多分布在铸件厚断面处,形状不规则,孔内粗糙铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;浇注系统和冒口的位置不对;浇注温度太高;合金化学成分不合格,收缩率过大,冒口太小或太少砂眼在铸件内部或表面有型砂充塞的孔眼型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;合箱时砂型局部损坏;浇注系统不合理,内浇口方向不对,金属液冲坏了砂型;合箱时型腔或浇口内散砂未清理干净粘砂铸件表面粗糙,粘有一层砂粒原砂耐火度低或颗粒度太大;型砂含泥量过高,耐火度下降;浇注温度太高;湿型铸造时型砂中煤粉含量太少;干型铸造时铸型未刷涂斜或涂料太薄夹砂铸件表面产生的金属片状突起物,在金属片状突起物与铸件之间夹有一层型砂型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;浇注温度过高,浇注速度太慢错型铸件沿分型面有相对位置错移模样的上半模和下半模未对准;合箱时,上下砂箱错位;上下砂箱未夹紧或上箱未加足够压铁,浇注时产生错箱冷隔铸件上有未完全融合的缝隙或洼坑,其交接处是圆滑的浇注温度太低,合金流动性差;浇注速度太慢或浇注中有断流;浇注系统位置开设不当或内浇道横截面积太小;铸件壁太薄;直浇道(含浇口杯)高度不够;浇注时金属量不够,型腔未充满浇不足铸件未被浇满裂纹铸件开裂,开裂处金属表面有氧化膜铸件结构设计不合理,壁厚相差太大,冷却不均匀;砂型和型芯的退让性差,或春砂过紧;落砂过早;浇口位置不当,致使铸件各部分收缩不均匀常见铸件缺陷及其预防措施 序缺陷名称缺陷特征预防措施1气孔在铸件内部、表面或近于表面处,有大小不等的光滑孔眼,形状有圆的、长的及不规则的,有单个的,也有聚集成片的。颜色有白色的或带一层暗色,有时覆有一层氧化皮。降低熔炼时流言蜚语金属的吸气量。减少砂型在浇注过程中的发气量,改进铸件结构,提高砂型和型芯的透气性,使型内气体能顺利排出。2缩孔在铸件厚断面内部、两交界面的内部及厚断面和薄断面交接处的内部或表面,形状不规则,孔内粗糙不平,晶粒粗大。壁厚小且均匀的铸件要采用同时凝固,壁厚大且不均匀的铸件采用由薄向厚的顺序凝固,合理放置冒口的冷铁。3缩松在铸件内部微小而不连贯的缩孔,聚集在一处或多处,晶粒粗大,各晶粒间存在很小的孔眼,水压试验时渗水。壁间连接处尽量减小热节,尽量降低浇注温度和浇注速度。4渣气孔在铸件内部或表面形状不规则的孔眼。孔眼不光滑,里面全部或部分充塞着熔渣。提高铁液温度。降低熔渣粘性。提高浇注系统的挡渣能力。增大铸件内圆角。5砂 眼在铸件内部或表面有充塞着型砂的孔眼。严格控制型砂性能 和造型操作,合型前注意打扫型腔。6热 裂在铸件上有穿透或不穿透的裂纹(注要是弯曲形的),开裂处金属表皮氧化。严格控制铁液中的 S、P含量。铸件壁厚尽量均匀。提高型砂和型芯的退让性。浇冒口不应阻碍铸件收缩。避免壁厚的突然改变。开型不能过早。不能激冷铸件。7冷 裂在铸件上有穿透或不穿透的裂纹(主要是直的),开裂处金属表皮氧化。8粘 砂在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙。减少砂粒间隙。适当降低金属的浇注温度。提高型砂、芯砂的耐火度。9夹 砂在铸件表面上,有一层金属瘤状物或片状物,在金属瘤片和铸件之间夹有一层型砂。严格控制型砂、芯砂性能。改善浇注系统,使金属液流动平稳。大平面铸件要倾斜浇注。10冷 隔在铸件上有一种未完全融合的缝隙或洼坑,其交界边缘是圆滑的。提高浇注温度和浇注速度。改善浇注系统。浇注时不断流。11浇不到由于金属液未完全充满型腔而产生的铸件缺肉。提高浇注温度和浇注速度。不要断流和防止跑火。生产中,浇注时应遵循高温出炉,低温浇注的原则。因为提高金属液的出炉温度有利于夹杂物的彻底熔化、熔渣上浮,便于清渣和除气,减少铸件的夹渣和气孔缺陷;采用较低的浇注温度,则有利于降低金属液中的气体溶解度、液态收缩量和高温金属液对型腔表面的烘烤,避免产生气孔、粘砂和缩孔等缺陷。因此,在保证充满铸型型腔的前提下,尽量采用较低的浇注温度。把金属液从浇包注入铸型的操作过程称为浇注。浇注操作不当会引起浇不足、冷隔、气孔、缩孔和夹渣等铸造缺陷,和造成人身伤害。为确保铸件质量、提高生产率以及做到安全生产,浇注时应严格遵守下列操作要领:1)浇包、浇注工具、炉前处理用的孕育剂、球化剂等使用前必须充分烘干,烘干后才能使用。(2)浇注人员必须按要求穿好工作服,并配戴防护眼镜,工作场地应通畅无阻。浇包内的金属液不宜过满,以免在输送和浇注时溢出伤人。(3)正确选择浇注速度,即开始时应缓慢浇注,便于对准浇口,减少熔融金属对砂型的冲击和利于气体排出;随后快速浇注,以防止冷隔;快要浇满前又应缓慢浇注,即遵循慢、快、慢的原则。(4)对于液态收缩和凝固收缩比较大的铸件,如中、大型铸钢件,浇注后要及时从浇口或冒口补浇。(5)浇注时应及时将铸型中冒出的气体点燃顺气,以免由于铸型憋气而产生气孔,以及由于气体的不完全燃烧而损害人体健康和污染空气。1、 铸造应力 铸造应力按产生的原因不同,主要可分为热应力、收缩应力两种。1) 热应力 铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力,称热应力。热应力使冷却较慢的厚壁处受拉伸,冷却较快的薄壁处或表面受压缩,铸件的壁厚差别愈大合金的线收缩率或弹性模量愈大,热应力愈大。定向凝固时,由于铸件各部分冷却速度不一致,产生的热应力较大,铸件易出现变形和裂纹。(2)收缩应力 铸件在固态收缩时,因受铸型、型芯、浇冒口等外力的阻碍而产生的应力称收缩应力。、一般铸件冷却到弹性状态后,收缩受阻都会产生收缩应力。收缩应力常表现为拉应力。形成原因一经消除(如铸件落砂或去除浇口后)收缩应力也随之消之,因此收缩应力是一种临时应力。但在落砂前,如果铸件的收缩应力和热应力共同作用其瞬间应力大于铸件的抗拉强度时,铸件会产生裂纹2、 减小和消除铸造应力的措施 (1)合理地设计铸件的结构 铸件的形状愈复杂,各部分壁厚相差愈大,冷却时温度愈不均匀,铸造应力愈大。因此,在设计铸件时应尽量使铸件形状简单、对称、壁厚均匀。(2)采用同时凝固的工艺 所谓同时凝固是指采取一些工艺措施,使铸件各部分温差很小,几乎同时进行凝固。因各部分温差小,不易产生热应力和热裂,铸件变形小。设法改善铸型、型芯的退让性,合理设置浇冒口等。同时凝固的示意图,该工艺是在工件厚壁处加冷铁,冒口设薄壁处。 (3)时效处理是消除铸造应力的有效措施。 时效分自然时效、热时效和共振时效等。所谓自然时效,是将铸件置于露天场地半年以上,让其内应力消除。热时效(人工时效)又称去应力退火,是将铸件加热到550650,保温24h,随炉冷却至150200T,然后出炉。共振法是将铸件在其共振频率下震动1060ndn,以消除铸件中的残留应力。 3、铸件的变形与防止如前所述,在热应力的作用下,铸件薄的部分受压应力,厚的部分受拉应力,但铸件总是力图通过变形来减缓其内应力。因此,铸件常发生不同程度的变形。铸件的变形往往使铸件精度降低,严重时可以使铸件报废,应予防止。因铸件变形是由铸造应力引起,减小和防止铸造应力的办法,是防止铸件变形的有效措施。 4、铸件的裂纹与防止当铸造内应力超过金属的强度极限时,铸件便产生裂纹。裂纹是严重的铸造缺陷,必须设法防止。裂纹按形成的温度范围分为热裂和冷裂两种。(1) 热裂 热裂的产生 一般是在凝固末期,金属处于固相线附近的高温时形成的。其形状特征是裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色。铸件结构不合理,合金收缩大,型(芯)砂退让性差以及铸造工艺不合理等均可引发热裂。钢和铁中的硫、磷降低了钢和铁的韧性,使热裂倾向增大。 热裂的防止 合理地调整合金成分(严格控制钢和铁中的硫、磷含量),合理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论