《氨基酸发酵工艺学》PPT课件.ppt_第1页
《氨基酸发酵工艺学》PPT课件.ppt_第2页
《氨基酸发酵工艺学》PPT课件.ppt_第3页
《氨基酸发酵工艺学》PPT课件.ppt_第4页
《氨基酸发酵工艺学》PPT课件.ppt_第5页
已阅读5页,还剩160页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章 氨基酸发酵工艺学,学习氨基酸发酵工艺学的目的、研究对象、任务及内容,氨基酸发酵是典型的代谢控制发酵,由发酵所生成的产物氨基酸,都是微生物的中间代谢产物,它的积累是建立在对微生物正常代谢的抑制。在脱氧核糖核酸(DNA)的分子水平上改变、控制微生物的代谢,使有用产物大量生成、积累。 以探讨氨基酸发酵工厂的生产技术为主要目的。氨基酸的生产以发酵为主,发酵过程的控制是整个生产的关键,产物的提纯及设备选用当否,也会影响产物得率。氨基酸发酵工艺学研究的对象应该包括从投入原料到最终获得产品的整个过程,其中有微生物生化问题、生化工程问题,也有分析与设备问题。 今后的发展是采用诱变、细胞工程、基因工程的手段选育出从遗传角度解除了反馈调节和遗传性稳定的更理想菌种,提高产酸;采用过程控制,优化工艺进行连续、自动化生产获得稳产高产;探求新工艺、新设备,以提高产率;研究发酵机制问题,以便能更好地控制氨基酸微生物中间代谢产物的发酵。,绪 论,第一节、氨基酸概论,1、氨基酸简介 构成蛋白质的基本分子单元。 碳原子分别以共价键连接氢原子、羧基和氨基及侧链。侧链不同,氨基酸的性质不同。 目前世界上可用发酵法生产氨基酸有20多种。,2、氨基酸的用途,(1)食品工业: 强化食品:赖氨酸,苏氨酸,色氨酸于小麦中 增鲜剂:谷氨酸单钠和天冬氨酸 苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(-天冬酰苯丙氨酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。,(2)饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 ,添加蛋氨酸、赖氨酸、精氨酸等必须氨基酸可促进动物生长发育、改善肉质、节省蛋白饲料、降低成本等。 (3 )医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代谢失调 氨基酸注射液由1985年的100万瓶增长到2003的1.5万瓶,每年以15-20%的速度递增,全行业的年产值预计能达到10亿元 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。 (4)化学工业: 谷氨基钠作洗涤剂,丙氨酸制造丙氨酸纤维(合成高分子化合物)。能保持皮肤湿润的润肤剂焦谷氨酸钠和质量接近天然皮革的聚谷氨酸人造革,以及人造纤维和涂料。,表3-8 世界氨基酸主要生产厂家生产能力,3、氨基酸的生产方法,发酵法: 直接发酵法:野生菌株发酵、营养缺陷型突变发酵、抗氨基酸结构类似物突变株发酵、抗氨基酸结构类似物突变株的营养缺陷型菌株发酵和营养缺陷型回复突变株发酵。包括添加前体发酵法:如用邻氨基苯甲酸,生产L-色氨酸;甘氨酸生产L-丝氨酸。 酶法:利用微生物细胞或产生的酶来制造氨基酸。延胡索酸和铵盐为原料,经天冬氨酸酶催化生产L-天冬氨酸。 提取法:常用毛发、血粉等蛋白质原料水解,从中提取。如胱氨酸、半胱氨酸和酪氨酸 合成法:合成法获得DL-蛋氨酸、不对称合成法获得L-氨基酸。如丙氨酸、甘氨酸、苯丙氨酸。 传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。,第二节、氨基酸发酵菌株的育种,是氨基酸代谢控制发酵的基本策略之一,发酵工程要求微生物大量地合成特定的代谢产物,这一目的只有当微生物的部分代谢调控机制遭到破坏时才能达到。用人工诱变的方法有目的地改变微生物固有的调节机制,使合成产物的途径畅通无阻,最大限度地积累特定产物,这种发酵称为代谢控制发酵。,1、 用野生菌株的方法,分离的野生菌株具备积累产物的特性,可用于直接发酵(产率低)。如谷氨酸发酵。 通过转换发酵,可延伸获得其它产物。主要采用改变培养条件。如谷氨酸发酵中改变铵离子浓度、磷酸浓度,使谷氨酸转向谷氨酰胺和缬氨酸发酵。,2. 用营养缺陷变异株的方法,通过诱变出菌体内氨基酸生物合成某步反应阻遏的营养缺陷型变异体,使生物合成在中途停止,不让最终产物起调控作用。 如用高丝氨酸缺陷株的赖氨酸发酵,谷氨酸缺陷株的鸟氨酸发酵,异亮氨酸缺陷菌株的脯氨酸发酵。,谷氨酸棒状杆菌的苏氨酸、异亮氨酸、甲硫氨酸和赖氨酸的合成是与分枝途径相联系的(图4-8),筛选高丝氨酸营养缺陷型后,限量供给苏氨酸时,就能解除由苏氨酸和赖氨酸的协同反馈抑制作用,而获得赖氨酸的过量生产。这是因为仅有赖氨酸或苏氨酸存在时,天冬氨酸激酶不被抑制,只有两者的协同效应才能造成抑制。在限量供给苏氨酸的情况下,即使赖氨酸过剩,抑制作用也很难发生。,3. 类似物抗性变异株的方法,用一种与自己想获得的氨基酸结构相类似的化合物加入培养基内,使其发生控制作用,从而抑制微生物的生长。这样,就可以得到在这种培养基中能够生长的变异株,而这种变异株正是解除了调控机制的,能够生成过量的氨基酸。 利用此方法发酵的有:苏氨酸、赖氨酸、异亮氨酸、组氨酸和精氨酸。,高丝氨酸脱氢酶,例如,在黄色短杆菌的赖氨酸、苏氨酸和异亮氨酸生物合成中(图5-16所示),选育抗苏氨酸结构类似物2-氨基-3-羟基戊酸(AHVr)突变株,得到了具有反馈抑制抗性,高丝氨酸脱氢酶活性提高1300倍,能积累14g/L苏氨酸的突变株。,4. 体内及体外基因重组的方法,基因工程包括细胞内基因重组方法和试管内的体外基因重组方法。 体内基因重组在应用上又称为杂交育种,主要方法包括:转化、转染、接合转移、转导和细胞融合等,这都是在细胞内暂时地产生染色体的局部二倍体,在两条DNA链之间引起两次以上的交叉,是遗传性重组现象。 细胞内基因重组技术的缺点是,现在只在同种或有近缘关系的微生物之间进行并较难成功。,代谢工程 在阐明代谢途径及其调控规律的基础上,应用重组DNA技术可以改变代谢途径分支点上的流量或引入新的代谢步骤与构建新的代谢网络。 其主要步骤为: 鉴定目标代谢途径涉及的酶(特别是限速酶); 取得酶基因,必要时可用蛋白质工程技术,如定点诱变,基因剪接等,使蛋白具有新的特点(增强活性或稳定性、解除反馈抑制等); 将一种或多种异源的或改造后的酶基因与调节元件一起克隆进目标生物; 使调节元件的作用及培育条件最优化。,5、基因工程菌,通过基因工程技术,构建理想的工程菌株,5.1载体-受体系统及克隆表达的研究,受体的获得 目前使用的氨基酸工程菌受体主要是大肠杆菌K-12及棒状杆菌家族,通常是通过诱变选育出的基础产率较高的菌株。 大肠杆菌遗传背景研究得清楚,载体系统完善,利于工程菌的构建,但它含有内毒素且不能将蛋白产物分泌至胞外,为应用带来困难。 棒状杆菌能克服这两个缺点,但载体受体系统研究较晚且有限制修饰系统的障碍,所以获得利于外源基因导入及表达且能稳定遗传的受体菌是尚待解决的问题。,5.2 载体的构建,有效的载体需要有在受体菌中可启动的复制起始位点,这可从棒状杆菌家族内源小质粒中获得; 载体所需的筛选标记及外源基因插入的多克隆位点,可从常用的克隆载体中获得。,5.3 基因转移手段,通常采用的方法有:原生质体转化、转导,电转化,接合转移。 原生质体转化的方法是较早采用的方法,由于受到原生质体再生条件的局限,效率不高; 电转化方法由于高效,快速被广泛使用,目前它的转化效率可达到原生质体转化法的100-1000倍。 接合转移可用于基因在亲缘关系远的物种之间的转移,并且可将外源基因整合于染色体上,易于稳定遗传。,第三节 氨基酸发酵的代谢控制,控制发酵的条件 控制细胞渗透性 控制旁路代谢 降低反馈作用物的浓度 消除终产物的反馈抑制与阻遏作用 促进ATP的积累,以利氨基酸的生物合成,一、菌种的代谢调控,是氨基酸代谢控制发酵的基本策略之二,1、控制发酵环境条件,专性需氧菌,控制环境条件可改变代谢途径和产物。,2、控制细胞渗透性,生物素、油酸和表面活性剂,引起细胞膜的脂肪酸成分的改变。 细胞内生物素水平高,Glu不能通过细胞膜 青霉素:抑制细胞壁的合成,由于细胞面内外的渗透压而泄露出来。 表面活性剂增加细胞膜通透性,氨基酸发酵必须考虑的重要因素,细胞透性的调节 细胞透性的调节,一般通过向培养基中添加化学成分(如生物素、油酸、甘油、表面活性剂、青霉素等,达到抑制磷脂、细胞膜的形成或阻碍细胞壁的正常生物合成,使谷氨酸生产菌处于异常生理状态,解除细胞对谷氨酸向胞外漏出的渗透障碍。 生物素:影响磷脂的合成及细胞膜的完整性。 油酸:直接影响磷脂的合成及细胞膜 甘油:甘油缺陷型菌株丧失-磷酸甘油脱氢酶,不能合成-磷酸甘油和磷脂。限量供应, 控制了细胞膜中与渗透性直接关系的磷脂含量,使谷氨酸排出胞外而积累。 表面活性剂:对生物素有拮抗作用,拮抗不饱和脂肪酸的合成,导致磷脂合成不足,影响细胞膜的完整性,提供细胞膜对谷氨酸的渗透性。 青霉素:抑制细菌细胞壁的后期合成,形成不完整的细胞壁,使细胞膜失去保护,使胞内外的渗透压差导致细胞膜的物理损伤,增大谷氨酸向胞外漏出的渗透性、,生物素,阻断脂肪酸的合成,影响细胞膜的合成,表面活性剂,对生物素有拮抗,阻断脂肪酸的合成,影响细胞膜的合成,在对数生长期添加青霉素,抑制细胞壁合成,细胞膜损伤,甘油缺陷型,磷脂的合成受阻,影响细胞膜的合成,油酸缺陷型,阻断不饱和脂肪酸的合成,影响细胞膜的合成,提高细胞膜的 谷氨酸通透性,控制磷脂的合成 使细胞膜受损(如表面活性剂) 青霉素损伤细胞壁,间接影响细胞膜,控制磷脂含量,通过油酸的合成 通过甘油合成 直接控制磷脂合成,3、控制旁路代谢,4、降低反馈作用物的浓度,利用营养缺陷型突变株进行氨基酸发酵必须限制所要求的氨基酸的量。,限制瓜氨酸的浓度可解除反馈抑制,实现鸟氨酸的生物合成。,5、消除终产物的反馈抑制与阻遏作用,使用抗氨基酸结构类似物突变株的方法或者通过选育营养缺陷型菌株。,6、促进ATP的积累,以利氨基酸的生物合成,ATP的积累可促进氨基酸的生物合成,第四节、谷氨酸生物合成及其发酵生产调控,代谢控制发酵是用遗传学或其他生物化学的方法,人为 地在分子水平上改变和控制微生物的代谢,打破微 生物正常的代谢调节,使有用产物大量生成和积累。 氨基酸发酵是典型的代谢控制发酵,发酵技术的关键是 打破微生物的正常代谢调节,人为控制微生物的代谢。,一. 谷氨酸的生物合成途径,1、谷氨酸生物合成中的几个途径(正常途径) (1)糖酵解途径 (EMP) (2)磷酸已糖途径 (HMP) (3)三羧酸循环(TCA环) (4)乙醛酸循环 (DCA环) (5)二氧化碳固定反应 PEP+CO2+GTP 草酰乙酸+GDP 丙酮酸+CO2+NADH 苹果酸+NAD 草酰乙酸 CO2 NAD+ NADH+H+ (6)-KGA的还原氨基化反应,PEP羧化酶,苹果酸酶,苹果酸脱氢酶,C6H12O6 + NH3 + O2 C5H9O4N + CO2 + 3H2O,在GA产生菌菌体内CO2固定反应有以下两条途径:,苹果酸酶 丙酮酸羧化酶 磷酸烯醇丙酮 酸羧化酶,CO2固定反应(丙酮酸羧化支路),2、GA生物合成的理想途径,(1)GA产生菌必须具备以下条件(内在因素 ),菌体有强烈的L谷氨酸脱氢酶活性,KGA + NH4+ +NADPH = GA + NADP,提供NADPH,用于还原-酮戊二酸生成谷氨酸,形成氧化还原共扼体系,该反应的关键是与异柠檬酸脱羧氧化相偶联,3/2Glucose EMP 丙酮酸 + 丙酮酸 + 丙酮酸,乙酰辅酶A + 乙酰辅酶A + 乙酰辅酶A,柠檬酸,则有: 3/2 C6H12O6 + NH4+ = C5H9O4N+ 4 CO2 产率:147 /(180*3/2) = 54.4%,CO2,谷氨酸,在前述GA 合成所必需的条件的基础上,体系不存在CO2固定反应,则有:,体系存在CO2的固定反应,结论,通过DCA环提供C4二羧酸时谷氨酸对糖的转化率仅为54.4%,在谷氨酸发酵中,DCA环可以作为TCA循环有缺陷时C4二羧酸的补充,.在前述GA 合成所必需的条件的基础上(封闭乙醛酸循环)存在CO2固定反应,则有:,Glucose EMP 丙酮酸 + 丙酮酸,CO2,则有: C6H12O6 + NH4+ = C5H9O4 N + CO2 (来自何方) 产率:147 / 180 = 81.7%,乙酰辅酶A + C4二羧酸,CO2,草酰乙酸(草酰乙酸羧化酶),苹果酸(苹果酸激酶),柠檬酸(DCA循环封闭),谷氨酸,四碳二羧酸的来源,在生产菌中检出CO2固定反应酶活性,磷酸烯醇丙酮酸(PEF)羧化酶和苹果酸酶,谷氨酸对糖的转化率达到81.7%,C6H12O6+NH3+1.5O2 C5H9O4N+CO2+3H2O,需要Mn+做催化剂,所以,在GA发酵过程中需要向培养基中补充Mn+ 实际上,发酵过程中不可能控制柠檬酸合成所需的C4二羧酸完全来自于CO2固定反应,体系也不可能完全不存在CO2固定反应,因此,GA 发酵的糖酸转化率应在:54.4%81.7%。目前,国内的GA生产企业的糖酸转化率通常都在50%以内:,提高GA的潜力是很大的,具体表现在: (1)强化CO2固定反应,具体措施:Mn+ ,生物素? (2)控制溶氧浓度是非常重要的 低的溶氧浓度,则丙酮酸向乳酸方向转化 高的溶氧浓度,则NADPH 有被氧化的可能,,氨的导入,合成谷氨酸的反应有3种:,(2)影响谷氨酸合成的外在因素,a、生物素对糖代谢的影响,生物素参与糖代谢作用:增加糖代谢的速度(对TCA有促进作用),乳酸积累,碳源利用率降低,发酵液的pH值下降。,A、生物素对GA发酵的影响,主要影响糖降解速度,不影响EMP与HMP途径的比率。生物素充足的条件下,丙酮酸以后的氧化活性虽然也得到提高,但由于糖降解速度显著提高,打破了糖降解速度与丙酮酸氧化速度之间的平衡,丙酮酸趋于生成乳酸的反应,引起乳酸的溢出。,当VH缺乏时:,(1)丙酮酸的有氧氧化就会减弱?则:乙酰辅酶A的生成量就会少,醋酸浓度降低,它的诱导作用降低;通过控制生物素亚适量,几乎看不到异柠檬酸裂解酶的活性 (2)VH对TCA循环的促进作用的降低,使得其中间产物琥珀酸的氧化速度降低,其浓度得到积累,这样它的阻遏和抑制作用加强;乙醛酸循环基本上是封闭的,代谢流向异柠檬酸-酮戊二酸谷氨酸的方向高效率地移动 两者综合的作用使得,异柠檬酸裂解酶的活性丧失,DCA循环得到封闭。,b、控制VH的浓度,以实现对于乙醛酸循环的封闭,c、生物素对氮代谢的影响,VH丰富时,出现“只长菌,不产酸”的现象,GA发酵过程中,前期,菌体的增殖期,一定的量的生物素是菌体增殖所必需的;而在产物合成期,则要限制生物素的浓度,以保证产物的正常合成。,结论,氨的导入时,生物素缺乏, NH4+影响糖代谢速度:提高糖代谢速度,高效合成谷氨酸,生物素充足时, NH4+不影响糖代谢速度,关于氮代谢的调节: 控制谷氨酸发酵的关键之一就是降低蛋白质的合成能力,使合成的谷氨酸不能转化成其他氨基酸或参与蛋白质合成。 在生物素亚适量的情况下,几乎没有异柠檬酸裂解酶,琥珀酸氧化能力弱,苹果酸和草酰乙酸脱羧反应停滞,在铵离子适量存在下,生成积累谷氨酸。生成的谷氨酸也不通过转氨作用生成其他氨基酸和合成蛋白质。 在生物素充足的条件下,异柠檬酸裂解酶活性增强,琥珀酸氧化能力增强,丙酮酸氧化力加强,乙醛酸循环的比例增加,草酰乙酸、苹果酸脱羧反应增强,蛋白质合成增强,谷氨酸减少,合成的谷氨酸通过转氨作用生成的其他氨基酸量增加。,d、VH对菌体细胞膜通透性的影响,通常谷氨酸发酵采用的菌种都是VH-,而VH又是菌体细胞膜合成的必须物质,因此,可以通过控制VH的浓度(干扰磷脂中的脂肪酸的生物合成)来实现的来实现对菌体细胞膜通透性的调节 。,葡萄糖,丙酮酸,+,丙酮酸,乙酰辅酶A,乙酰辅酶,乙酰辅酶A羧化酶 (辅酶是VH ),CO2,丙二酰辅酶A,丙二酰辅酶A,C4,C6,CO2,培养基中生物素限量时,胞内AA 92% 胞外,培养基中生物素丰富时,胞内AA 12% 胞外,CO2,Glu生产菌大多是生物素缺陷型,发酵时控制生物素亚适 量,使细胞变形拉长,改变了细胞膜的通透性引起代谢失 调使Glu得以积累。,生物素贫乏时,细胞内的Glu含量少而且容易析出,而培 养基中积累大量的Glu;生物素丰富时,培养基中几乎不 积累Glu,而细胞内却含有大量的Glu,且不易被析出。 这说明生物素对细胞膜通透性有重要影响。,谷氨酸发酵的关键在于发酵培养期间谷氨酸生产菌细胞膜结构与功能发生特异性变化,使细胞膜转变成有利于谷氨酸向膜外渗透的形态,使终产物不断排出细胞外,胞内谷氨酸不能积累到引起反馈调节的浓度,胞内谷氨酸源源不断被优先合成,分泌到发酵培养基中积累。,B、供氧浓度,过量:NADPH的再氧化能力会加强,使-KGA的还原氨基化受到影响,不利于GA 的生成。 供氧不足:积累大量的乳酸,使发酵液的pH值下降,不利于GA的产生,同时,一部分葡萄糖转成了乳酸,影响了糖酸转化率,降低了产物的提出率。,C、NH4+浓度,(1)影响到发酵液的pH值 (2)与产物的形成有关: 过低,不利于-KGA的还原氨基化;过高,产生谷氨酰胺。 NH4+的供给方式: (1)液氨 (2)流加尿素,D、磷酸盐,过量:(1)促进EMP途径,打破EMP与TCA之 间的平衡,积累丙酮酸,产生乳酸等 (2)产生并积累Val,,Val(1)可以抑制葡萄糖 丙酮酸,使GA的生物合成受到阻止 (2)消耗了丙酮酸,降低了糖酸转化率 (3)发酵液中的Val存在,严重的影响GA 的结晶、提出,研究证明:,谷氨酸生产菌种存在EMP途径的全部酶和HMP途径有关 的酶,TCA循环中的柠檬酸、顺乌头酸、异柠檬酸能定量地生 成谷氨酸,其相应的酶与谷氨酸合成有关,以醋酸和乙醇为原料进行谷氨酸发酵时,DCA循环是C4 二羧酸的唯一补充来源;但是以葡萄糖为原料时,在谷 氨酸生成期此循环应关闭,谷氨酸菌存在CO2固定生成草酰乙酸的PEP羧化酶和苹果 酸酶,与谷氨酸得率正相关,第五节 谷氨酸生物合成的调节机制,一、谷氨酸生物合成的调节,谷氨酸脱氢酶 -酮戊二酸脱氢酶 磷酸烯醇丙酮酸羧化酶 柠檬酸合成酶,优先合成,在微生物的代谢中,Glu比Asp优先合成; 合成过量时则抑制谷氨酸脱氢酶,使代谢转向合成Asp; Asp过量时反馈抑制PEP羧化酶的活力,停止合成草酰乙酸。,谷氨酸脱氢酶(GDH)的调节,谷aa脱氢酶,谷aa对其反馈抑制和反馈阻遏,柠檬酸合成酶的调节,柠檬酸合成酶,TCA的关键酶,受能荷调节,谷aa反馈阻遏,乌头酸反馈抑制,所以,正常代谢不积累Glu,异柠檬酸脱氢酶的调节 细胞内-酮戊二酸的量与异柠檬酸的量需维持平衡。当-酮戊二酸过量时,将对异柠檬酸脱氢酶发生反馈抑制作用,停止合成-酮戊二酸。,异柠檬酸脱氢酶,-酮戊二酸反馈抑制,-酮戊二酸脱氢酶:谷氨酸产生菌中先天性的丧失或微弱。 磷酸烯醇式丙酮酸羧化酶,PEP受天冬aa反馈抑制,受谷aa和天冬 aa反馈阻遏,丧失或有微弱的-酮戊二酸脱氢酶活力,使-酮戊二酸不能继续氧化; CO2固定能力强,使四碳二羧酸全部由CO2固定反应提供,而不走乙醛酸循环; 谷氨酸脱氢酶的活力很强,并丧失谷氨酸对谷氨酸脱氢酶的反馈抑制和反馈阻遏,同时,NADPH2再氧化能力弱,这会使-酮戊二酸到琥珀酸的过程受阻; 有过量的NH4+ 存在,-酮戊二酸经氧化还原共轭氨基化反应而生成谷氨酸却不形成蛋白质,从而分泌泄漏于菌体外; 同时,谷氨酸生产菌应不利用体外的谷氨酸,使谷氨酸成为最终产物。 生产菌株还应该具有生物素合成缺陷、油酸合成缺陷和甘油合成缺陷等特点。,二. 谷氨酸高产菌模型特征,三、谷氨酸生产的代谢调控,1.切断或减弱支路代谢 2.解除自身的反馈抑制 3.增加前体物的合成 4.提高细胞膜的渗透性 5.强化能量代谢 6.利用基因工程技术构建谷氨酸工程菌株,(一)、谷氨酸生产菌的具体育种思路 (谷氨酸代谢控制发酵的基本方法和实现的途径),1.切断或减弱支路代谢 选育减弱-酮戊二酸进一步氧化能力的突变株 减弱-酮戊二酸脱氢酶复合体的活性,可以使代谢流向谷氨酸,从而使谷氨酸得到积累。 选育减弱HMP途径后段酶活性的突变株 从葡萄糖到丙酮酸的反应由EMP途径和HMP途径组成。但通过HMP也可生成核糖、核苷酸、莽草酸、芳香族氨基酸、辅酶Q、维生素K、叶酸等物质。消耗了葡萄糖,使谷氨酸的产率降低。如削弱或切断这些物质的合成途径,就会使谷氨酸的产率增加。可通过选育莽草酸缺陷型或添加芳香族氨基酸能促进生长的突变株以及抗嘌呤、嘧啶类似物或核苷酸类抗生素,如德夸菌素、狭霉素C抗性突变株来实现。,选育不分解利用谷氨酸的突变株(不分解) 积累谷氨酸,必须使菌种不能分解利用谷氨酸,可通过选育以谷氨酸为唯一碳源,菌体不长或生长微弱的突变株来实现。 选育减弱乙醛酸循环的突变株 四碳二羧酸是由CO2固定反应和乙醛酸循环所提供的。减弱乙醛酸循环,CO2固定反应所占的比例就会增大,谷氨酸的产率就高。可通过选育琥珀酸敏感型突变株、不分解利用乙酸突变株、异柠檬酸裂解酶活力降低菌株实现。 阻止谷氨酸进一步代谢(不代谢) 细胞还可以谷氨酸为前体继续向下合成谷氨酰胺等,必然导致谷氨酸的积累量减少。要避免谷氨酸被菌体利用,还需要切断谷氨酸向下的代谢途径。,2.解除菌体自身的反馈调节 选育耐高渗透压突变株 菌种高产谷氨酸,应具备在高糖、高谷氨酸的培养基中能正常生长、代谢的能力,即在高渗培养基中菌体的生长和谷氨酸的合成不受影响或影响很小。可通过选育耐高糖、耐高谷氨酸及耐高糖+高谷氨酸突变株来实现。 选育解除谷氨酸对谷氨酸脱氢酶反馈调节的突变株 谷氨酸合成达到一定量时,谷氨酸会反馈抑制和阻遏谷氨酸脱氢酶,使谷氨酸的合成停止,使代谢转向天冬氨酸的合成。若解除了谷氨酸对谷氨酸脱氢酶的反馈调节,菌体就会不断的合成谷氨酸。可通过选育酮基丙二酸抗性、谷氨酸结构类似物抗性(如谷氨酸氧肟酸盐)、谷氨酰胺抗性突变株来实现。,3.增加前体物的合成 选育强化三羧酸循环中从柠檬酸到-酮戊二酸代谢的突变株 这可通过选育柠檬酸合成酶活力强突变株及抗氟乙酸、氟化钠、重氮丝氨酸、柠檬酸抗性等突变株来实现。 选育强化CO2固定反应的突变株 这可通过选育以琥珀酸或苹果酸为唯一碳源生长良好的突变株、氟丙酮酸敏感突变株以及丙酮酸或天冬氨酸缺陷突变株来实现。,4.提高细胞膜的渗透性 选育抗Vp类衍生物突变株 选育抗Vp类衍生物,如香豆素、卢丁等突变株,都能遗传性的改变细胞膜的渗透性。 生物素缺陷株(生物素亚适量) 选育溶菌酶敏感突变株。 选育二氨基庚二酸缺陷突变株。 选育温度敏感突变株 谷氨酸温度敏感突变株的突变位置是在决定与谷氨酸分泌有密切关系的细胞膜结构基因上,发生碱基的转换或颠换,一个碱基为另一个碱基所置换,这样为该基因所指导的酶,在高温下失活,导致细胞膜某些结构的改变。当控制培养温度为最适生长温度时,菌体正常生长;当温度提高到一定程度时,菌体便停止生长而大量产酸。 (5)油酸缺陷型(油酸亚适量) (6)甘油缺陷型(甘油亚适量),5. 强化能量代谢 谷氨酸高产菌的两个显著特点是:-酮戊二酸继续向下氧化的能力微弱和乙醛酸循环微弱,使能量代谢受阻,TCA循环前一阶段的代谢减慢。强化能量代谢可弥补上述两点不足,使TCA循环前一段代谢加强,谷氨酸合成的速度加快。 选育呼吸链抑制剂抗性突变株 如可选育丙二酸、氧化丙二酸、氰化钾、氰化钠抗性突变株来实现。 选育ADP磷酸化抑制剂抗性突变株 如可选育2,4-二硝基酚、羟胺、砷、胍等抗性突变株来实现。 (3)选育抑制能量代谢的抗生素的抗性突变株 如可选育缬氨霉素、寡霉素等抗性突变株来实现。,第六节、谷氨酸的生产工艺,我国与国外谷氨酸生产的现状及存在问题 菌种的性能:我国产酸8.610,转化率55;日本1012,转化率55。 工艺和过程控制:我国低糖和中糖发酵,日本高糖发酵并流加、提高罐压,保证溶氧。 对温度、压力、空气流量、蛋白质、溶氧采用计算机控制。,一、 谷氨酸生产菌的特征、育种及扩大培养,(一)、谷氨酸生产菌的主要特征与菌学性质,现有谷氨酸生产菌主要是棒状杆菌属、短杆菌属、小杆菌属及节杆菌属中的细菌。 1.棒状杆菌属(Corynebacterium):谷氨酸棒杆核菌Cornebateium gho-tamlkns) 2.短杆菌属(Brevibacterium):黄色短杆菌(Bteuibaterun flavum) 、乳糖发酵短杆菌(Bra.lactofementum) 3.小杆菌属(Microbacterium):嗜氨小杆菌(Micrbaterium ammoniaphilmn) 4.节杆菌属(Arthrobacterium),表1 谷氨酸发酵微生物特征及菌学比较,(二)、谷氨酸生产菌形态与生理的共同特征 细胞形态为球形、棒形以至短杆形。 革兰氏染色阳性,无芽孢、无鞭毛、不运动 都是需氧形微生物,在通气条件下才能产生谷氨酸。 都是生物素缺陷型,需要生物素作为生长因子 脲酶强阳性 不分解淀粉、纤维素、油脂、酪蛋白及明胶 发酵中菌体发生明显形态变化和细胞渗透性的变化 CO2固定反应酶系活力强,异柠檬酸裂解酶活力欠缺或微弱、乙醛酸循环弱, -酮戊二酸氧化能力缺失或微弱;柠檬酸合成酶、乌头酸酶、异柠檬酸脱氢酶以及谷氨酸脱氢酶活力强,还原性辅酶进入呼吸链 具有向环境中泄漏谷氨酸的能力 不分解利用谷氨酸,能耐受高浓度的谷氨酸,产量在5以上。,(三)、 国内谷氨酸生产菌及其比较,1、北京棒杆菌(AS1299)的形态和生理特征 2、钝齿棒杆菌(AS1542)的形态和生理特征 3、天津短杆菌(T6-13)的形态和生理特征 4、北京棒杆菌(7338)与钝齿棒杆菌(B9)的比较 5、天津短杆菌(T6-13)与钝齿杆菌(B9)的比较 6、目前味精行业采用的主要菌株 S9114 华南理工大学 FD415 上海复旦大学 TG961 天津科技大学,二、 谷氨酸生产菌在发酵过程中的形态变化,1、种子的菌体形态 斜面和一、二级种子培养在不同培养条件下,细胞形态基本相似。斜面培养的菌体较细小,一、二级种子比斜面菌体大而粗壮,革兰氏染色深。多为短杆至棒杆状,有的微呈弯曲状,两端钝圆,无分枝;细胞排列呈单个、成对及“V”字形,有栅状或不规则聚块;分裂的细胞大小为0.70.9*1.03.4um。由于生物素充足,繁殖的菌体细胞均为谷氨酸非积累型细胞。 2、谷氨酸发酵不同阶段的菌体形态 从谷氨酸发酵中菌体形态的变化来看,大致可以分为长菌型细胞、转移期细胞和产酸型细胞3种不同时期的细胞形态. 3、谷氨酸发酵感染噬菌体后的菌体形态 发酵前期感染噬菌体后,菌体细胞明显减少,细胞不规则,发圆、发胖,缺乏“”字形排列,有明显的细胞碎片,严重时出现拉丝、拉网,互相堆在一起,几乎找不到完整的菌体细胞,类似蛛网或鱼翅状。 在发酵中、后期感染噬菌体后,菌体细胞形态不规则,边缘不整齐,有的边缘似乎有许多毛刺状的东西,有细胞碎片 。,谷氨酸发酵过程中菌体形态变化及代谢特征,三、 菌种的扩大培养和种子的质量要求,1. 种子培养过程,菌种:菌种钝齿棒杆菌和北京棒杆菌及各种诱变株。 生长特点:糖质原料,需氧,以生物素为生长因子。 斜面培养基:蛋白胨、牛肉膏、氯化钠组成的pH7.0-7.2琼脂培养基,32培养18-24h。 一级种子培养:由葡萄糖、玉米浆、尿素、磷酸氢二钾、硫酸镁、硫酸铁及硫酸锰组成。pH6.5-6.8。1000ml三角瓶装量200250ml,震荡,32,培养12h。 二级种子培养:用种子罐培养,料液量为发酵灌投料体积的1,用水解糖代替葡萄糖,于32进行通气搅拌710h。,2、种子质量要求,一级种子质量标准:一级种子为摇瓶种子。 质量要求: 显微镜检查,无杂菌,菌体粗壮、均匀、排列整齐 涂平板检查无杂菌、无噬菌斑 OD值净增0.6左右。 种子营养液pH在6.7左右 种子营养液残糖在0.5%以下。 二级种子质量标准:二级种子为生产车间的种子罐中培养的。对其质量要求 平板检查无杂菌、无噬菌体污染,菌体大小均一,呈单个或八字排列。 活菌数108109/ml。 pH在7.2左右, 残糖含量在1.5左右。 其它各项指标与一级种子相同。 种龄和种量的控制 一级种子控制在11-12h,二级控制在7-8h。 种量为1。过多,菌体娇嫩,不强壮,提前衰老自溶,后期产酸量不高。,四、谷氨酸的生产工艺,磷酸盐、玉米浆、镁盐等,分过滤器,发酵灌,调和,配料,预处理 (水解),发酵培养基,调pH,连消,菌种罐,等电沉淀,粗谷氨酸,中和,摇瓶菌种,原料,种子培养基,空气,斜面,尿素贮罐,空气净化系统,脱色,结晶,浓缩,成品味精,(一)、 谷氨酸发酵工艺流程,淀粉 葡萄糖,糖蜜 稀释蜜,配 料 种子罐,玉米浆 糖 蜜 磷酸二氢钾 硫酸镁,无菌空气,Fe2+ 、 Mn2+,NH3,菌种,发酵罐,等电提取,中 和,除 铁,脱 色,浓缩、结晶,离 心,干 燥,味 精,发酵罐,Na2CO3,(二)、原料的预处理,1.淀粉水解糖的制备:酸水解或酶水解 酸水解法 调浆:干淀粉用水调成10-110Bx的淀粉乳,加盐酸0.5-0.8至pH1.5。 糖化:蒸汽加热,加压糖化25min。冷却至80下中和。 中和:烧碱中和,至pH4.0-5.0 脱色:活性炭脱色和脱色树脂。活性炭用量为0.6-0.8,在70及酸性条件下搅拌后过滤。 酶法:以大米或碎米为原料时采用 调浆配料:大米进行浸泡磨浆,将淀粉乳调成1520B,用Na2CO3调pH6.4-6.5,用CaCl2调节浆中的Ca2+至50mg/L。加细菌a-淀粉酶(1012u/g,干淀粉计算)。 喷射液化:一次喷射温度100105,层流罐维持95100,液化时间1h。典色反应棕红色。液化液经二次喷射,维持温度130140,灭酶510min,再经板式换热器冷却至70以下,进入糖化罐。 糖化:糖化温度60 1,pH4.0-4.4;糖化酶(100120u/g,干淀粉计算)糖化 过滤:糖液先用Na2CO3水溶液调pH4.8-5.0,过滤。,糖化液的质量要求 色泽 淡黄色透明液 糊精反应 无 还原糖含量 2528 DE值 9598 透光率 60 pH 4.6-5.0 淀粉转化率 9598 糖蜜原料:不宜直接用来作为谷氨酸发酵的碳源,因含丰富的生物素。 预处理方法:活性碳或树脂吸附法和亚硝酸法吸附或破坏生物素。也可以在发酵液中加入表面活性剂吐温60或添加青霉素。,(三)、谷氨酸发酵控制,发酵培养基,1、碳源:葡萄糖、果糖、蔗糖、麦芽糖 作用:菌体生长繁殖;新陈代谢的能源;产生a-硐戊二酸转化为谷氨酸 低中糖发酵:初始糖浓度12.5-13%. 中高糖发酵:初始糖浓度14-16%。 补糖发酵:初始糖浓度12-13%,中后期补糖2-4。 目前,较多采用低糖浓度流加发酵控制。碳源浓度过高时,对菌体生长不利,氨基酸的转化率降低。,2、氮源: 无机氮源: (1)尿素 (2)液氨 (3)碳酸氢铵; 有机氮源:玉米浆、麸皮水 解液、豆饼水解液和糖蜜等。 作用:是合成菌体、蛋白质、核酸等含氮物质和合成氨基酸来源氮源;调节pH 尿素灭菌时形成磷酸铵镁盐,须单独灭菌,分批流加。 氨水用pH自动控制连续流加 C:N,谷氨酸发酵所需比为100:1521,3、无机盐: 磷酸盐、 硫酸镁 、 钾盐、 微量元素 作用:构成细胞成分,酶的组成成分;激活或抑制酶活性;调节培养基渗透压;调节培养基的pH;调节培养基的氧化还原电位。 磷酸盐:对发酵有显著影响,不足时糖代谢受抑制。控制在0.005-0.01mol/L 硫酸镁:是已糖磷酸化酶、柠檬酸脱氢酶和羧化酶的激活剂,促进葡萄糖-6-磷酸脱氢酶活力。G要求镁离子浓度最低25ug/L;G-要求4-6 ug/L。 钾盐:钾盐多,有利于产酸;钾盐少,有利于菌体生长 微量元素:主要是锰(许多酶的激活剂)、铁(细胞色素、细胞色素氧化酶和过氧化氢酶活性基团组分,可促进谷氨酸产生菌的生长),10-610-4mol/L。严格控制铜、汞含量,以免对发酵产生毒害作用。,4、生长因子:主要参与细胞膜的代谢,进而影响膜的透性。 (1) 生物素(25ug/ml )(2) 维生素B1 生物素:乙酰CoA的辅酶,参与脂肪酸的生物合成,影响磷酯的合成。 当磷酯含量减少到正常时的一半左右时,细胞发生变形,谷氨酸能够从胞内渗出,积累于发酵液中。 生物素过量,则发酵过程菌体大量繁殖,不产或少产谷氨酸,你谢产物中乳酸和琥珀酸明显增多。当生物素缺乏时,菌种生长缓慢。因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。,表41 不同生产菌谷氨酸发酵培养基配方,(四) 谷氨酸发酵工艺控制,1、 温度对谷氨酸发酵的影响,微生物在一定条件下,都有一个最适的生长温度范围。谷氨酸产生菌的最适生长温度为3032,产生谷氨酸的最适为3437。菌体生长期温度过高,易造成菌体衰老。生产上表现为OD值增长慢,pH值高,耗糖慢,发酵周期长,谷氨酸生成少。在发酵中、后期,菌体生长基本停止,适当提高温度可促进产生谷氨酸。因此根据菌种特点,温度采用二级或三级管理。即发酵前期控制在30-32;中、后期34-37。,表42 菌谷氨酸产生菌的培养温度,2、 pH对氨基酸发酵的影响及其控制,作用机理:主要影响酶的活性和菌的代谢。 控制pH方法:流加尿素和氨水 流加方式:根据菌体生长、pH变化、糖耗情况和发酵阶段等因素决定 控制: (1)菌体生长或耗糖慢时,少量多次流加尿素,避免pH过高 (2)菌体生长或耗糖过快时,流加尿素可多些,以抑制菌体生长。 (3)发酵后期,残糖少,接近放罐时,少加或不加尿素,以免造成氨基酸提取困难。 (4)氨水对pH影响大,应采取连续流加。,3、 供氧对谷氨酸发酵的影响,溶解氧的控制:大小是由通风与搅拌两方面决定的,与搅拌器的型式、直径大小、搅拌转速、搅拌器在发酵罐内的相对位置因素等有关。一般搅拌器直径大,转速快,溶氧系数大。所以,增大搅拌转速比增加通风量对溶氧系数提高更为显著。,具体操作: 发酵前期,以低通风量为宜; 发酵中、后期,以高通风量为好。 当培养基浓度高、营养丰富、生物素用量大时,应采用高通风量。当菌体生长缓慢、pH偏高时,应减少通风量,或停止搅拌,以利于长菌。当菌体生长快、耗糖快时,应提高通风量,以抑制生长和满足合成谷氨酸所必须的足够能量。,具体风量:前期1:0.12(V/V);中期1:0.22-0.26;后期1:0.15-0.18,发酵通风量的控制,4、 泡沫的消除,(1)泡沫的形成和性质 搅拌与通风 发酵液中含有蛋白胨、玉米浆、黄豆粉是主要的发泡剂。 发酵液感染杂菌和噬菌体 (2)泡沫对发酵的影响 发酵灌的装料系数减少 氧传递系数减少 发酵液逃液,增加染菌机会,(3)泡沫的消除(控制) 调整培养基的成分(少加或缓加宜起泡的原材料);改变某些物理化学参数(pH、温度、通气和搅拌;改变发酵工艺 采用机械消泡或消泡剂消泡 机械消泡:利用机械振动或压力变化使泡沫破裂 消泡剂:属表面活性剂,天然油脂(豆油、玉米油);脂肪酸和酯类;聚醚类(氧化丙烯和氧化乙烯与甘油的聚合物);硅酮类,5、发酵过程主要变化及中间代谢控制,1.适应期 2.对数生长期 3.转化期 4.产酸期,谷氨酸的发酵过程曲线,(1)适应期:尿素分解出氨使pH上升。糖不利用。2-4h。 措施:接种量和发酵条件控制使适应期缩短。 (2)对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用后pH又迅速下降。溶氧急剧下降后维持在一定水平。菌体浓度迅速增大,菌体形态为排列整齐的八字形。不产酸。12h。 措施:及时供给菌体生长必须的氮源及调节pH,维持温度30- 32 (3)菌体生长停止期:谷氨酸合成。 措施:提供必须的氨及pH维持在7.2-7.4。大量通气,控制温度34-37 。 (4)发酵后期:菌体衰老,糖耗慢,残糖低。 措施:营养物耗尽酸浓度不增加时,及时放罐。,6、 异常发酵现象及其处理,常见的异常发酵现象及其处理方法,7、 发展方向,改进发酵工艺 1.一次高浓度糖发酵 2.降低发酵初糖浓度,连续流加糖发酵 3.混合碳源发酵 4.应用电子计算机控制和管理发酵,使发酵工艺最佳化 5.固定化活细胞连续发酵生产谷氨酸,(三) 谷氨酸发酵中噬菌体的污染与防治,1、谷氨酸发酵中噬菌体的污染与防治 噬菌体对发酵的危害 在谷氨酸发酵过程中,若菌体受到噬菌体的侵染,一般会发生溶菌、发酵迟缓或停止等现象,结果造成不再积累谷氨酸,严重的会引起倒罐,甚至连续倒罐。为防止噬菌体的侵染,首先要了解谷氨酸噬菌体的特性,从而加以防治,确保谷氨酸发酵顺利进行。,2.谷氨酸噬菌体的主要特征 具有非常专一的寄生性。 不耐热性(在70C,5min均死亡)。 pH的稳定性。pH79时,稳定;低于6或高于10时,失活; 小于4时完全失活。 嗜氧性。在低溶氧情况下,抑制生长。 对干燥的稳定性。环境越干燥,噬菌体越不易死。在潮湿情况下,易死亡。 不耐药性。在甲醛05、苯酚05、漂白粉15、石灰水1下均可杀死噬菌体。,3.谷氨酸发酵污染噬菌体后的异常现象 发酵液光密度在初期开始上升,而后又下降或不上升。 发酵液pH逐渐上升,48h内可达80以上,且不下降, 不耗糖或耗糖缓慢。 泡沫大、黏度大、有时呈胶状;可拔丝。 发酵周期长,产酸低或不产酸。 镜检时,菌体减少,缺少八字排列,菌体变胖,革兰氏染 色呈红色片状。严重时呈网状或鱼翅状,几乎看不到完整细胞 发酵中后期,周期稍有延长,温度缓慢上升,谷氨酸产量有所提高(菌体破裂释放出谷氨酸)。 平板检查时,有噬菌斑。摇瓶发酵,发酵液稀而清。 发酵液残糖高、颜色浑、发灰、发红、有刺激性臭味,黏度大,泡沫多,难中和,过滤困难。,4.防治噬菌体污染的主要措施 (1).严格控制活菌体的排放 摇瓶液、取样液、废弃菌液或发酵液均应先灭菌,后排放。已经污染了噬菌体的发酵液或种子液应先灭菌(80C,5min),再进行提取或排放。提取的母液不能乱扔,应经密闭阴沟或远离空压机房和发酵车间,才可排放。 必须建立工厂环境清洁卫生制度,要定期使用药剂冲刷地面。,(2).严防噬菌体进入种子罐或发酵罐 种子室要远离发酵车间,严防种子带人噬菌体,制定检查噬菌体的制度。各级种子的制备要严格灭菌。轮换使用菌种或使用抗噬菌体的菌株均可防止噬菌体污染。还可进行药物防治或选育抗链霉素突变株。进行药物防治可添加金属螯合剂(抑制噬菌体的吸附或DNA的注入)、表面活性剂(作用于细菌表面,抑制噬菌体的吸附)、抗生素(抑制噬菌体蛋白质合成)等。,5发酵罐中污染噬菌体后的抢救 谷氨酸发酵前期感染了噬菌体后,可以采用一系列抢救措施,以减少损失。 (1)抗性菌法:发现噬菌体后,应停止搅拌,小通风,降低pH,立即培养抗性种子,然后接人发酵液中;并补加13的不调pH的玉米浆。,(2)轮换菌种法:发现噬菌体后,停止搅拌,小通风,降低pH, 轮换使用菌种,如672换Asl.299、Asl.299换Asl.542、Asl.542 换Asl.299。不加初尿,并补充3040玉米浆(不调pH), 适当加磷、镁(为正常量的13)。若pH仍偏高,可停止搅拌,适当通风,至pH正常,OD值增长后再开始搅拌。,(3)灭噬菌体法。发现污染噬菌体后,停搅拌,小通风,降低pH,在罐内用夹层(或冷却管)加热至7080,并自顶盖通入蒸汽自排汽口排出,冷却后,若pH过高,停止搅拌,小通风,降低pH,接入二倍量的原菌种,至pH正常后开始搅拌。,(4)放罐重消毒。发现噬菌体后,放罐,调pH,补加12的玉米浆和13的水解糖,重新灭菌,适当降低温度,不加初料,然后接入2%的种子,继续发酵。,5、谷氨酸发酵中杂菌的污染与防治 谷氨酸发酵要求纯种培养,若遭受了杂菌的污染,轻者影响产量或质量,重者可能导致倒罐,甚至停产。因此,在谷氨酸发酵中,杂菌污染的检查与防治是十分重要的。 (1)检查杂菌的方法 所谓染菌,是指在发酵培养基中侵入了阻碍生产的其他微生物。检查杂菌的方法要求准确、快速、尽早发现、及时采取措施。,a.显微镜检查 用革兰氏染色法染色、镜检。若发现有芽孢菌、革兰氏阴性菌、长杆菌、球菌、菌体碎片等情况,说明发酵液已经染菌,应及时采取措施。,b.培养皿画线检查 平板检查时,先将灭菌后的培养基倒人培养皿内,冷却,接种,于37C下培养24h,镜检。,c.肉汤培养检查法 此法主要用于检查空气系统及培养基是否带菌。具体做法是将培养液装在吸气瓶中,灭菌30min,在37C下培养24h,如无混浊,说明无杂菌污染;如呈现混浊,说明染菌。,6.杂菌污染的防治 要防止杂菌污染,先要弄清楚造成染菌的原因,然后进行防治。 (1)杂菌污染的主要原因分析 种子带菌。若发酵前期染菌,可能是种子带菌所致或发酵 罐本身染菌所致。为了避免种子染菌,在斜面种子、摇瓶种子制备过程中都必须严格操作,确保无杂菌污染。,罐体与管件渗漏所引起的染菌。若罐体或管件有极其微小的 漏孔时,易引起染菌。有时漏孔用肉眼直接察觉不到,需要通过一定的试漏方法才能发现。,死角。罐或管路连接处的死角,在灭菌时其中的杂菌不易被 杀死,易造成连续染菌,影响生产。,空气系统染菌。好气性发酵需连续不断地通人大量无菌空气。空气系统所有的设备要定时打开排液阀排液,避免设备内积液太多,带入空气中去,造成染菌。,环境污秽造成染菌。车间、环境卫生差,易引起染菌。为堵绝杂菌的来源和繁殖机会,必须加强车间和环境的清洁卫生工作。,7杂菌污染的防治与挽救 污染了杂菌后,要根据具体情况,及时采取措施加以挽救。具体措施为: (1)一级种子经平板检查确认无菌后,方可接入二级种子中。 (2)二级种子冷却,小于10保压1216h,平板检验确认无杂菌后,再接入发酵罐。 (3)发酵06h后,大幅度染菌,镜检发现球菌,应放罐重消毒,消毒温度适当降低。,(4)发酵12h后,发现污染有少量芽孢或杆菌,但光密度尚正常,pH仍有升降,耗糖一般,谷氨酸产量在0.2以上,则可加大通风量,按常规发酵到底。 (5)发酵后期确认染球菌,则可加热至7080放罐。 (6)发现染菌的罐,下次空罐消毒加入甲醛后,再用蒸汽熏蒸0.120.17Lm3。 (7)加强车间卫生管理,防止活菌体飞扬。 (8)选用抗药性菌种。,第八节 谷氨酸的提取,一、 概 述,将谷氨酸生产菌在发酵液中积累的L-谷氨酸提取出来,再进一步中和、除铁、脱色、加工精制成谷氨酸单钠盐叫提炼。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论