2024年初三上册数学专项《圆》全章复习与巩固-巩固练习(基础)_第1页
2024年初三上册数学专项《圆》全章复习与巩固-巩固练习(基础)_第2页
2024年初三上册数学专项《圆》全章复习与巩固-巩固练习(基础)_第3页
2024年初三上册数学专项《圆》全章复习与巩固-巩固练习(基础)_第4页
2024年初三上册数学专项《圆》全章复习与巩固-巩固练习(基础)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年初三上册数学专项《圆》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题

1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有().A.1个B.2个C.3个D.4个2.(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45° B.30° C.75° D.60°3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为().

A.米B.米C.米D.米4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是().A.外离B.外切C.相切D.内含5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF=6,则圆的直径长为().A.12B.10C.4D.15第3题图第5题图第6题图第7题图6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为().A.(2,-1)B.(2,2)C.(2,1)D.(3,1)7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于().A.55°B.90°C.110°D.120°8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是().A.60°B.90°C.120°D.180°二、填空题9.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________________(只填一个即可).

10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.

第9题图第11题图第12题图第15题图12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.13.点M到⊙O上的最小距离为2cm,最大距离为10cm,那么⊙O的半径为________.14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且,则AC的长为________.15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,∠ADE=65°,则∠BOC=________.16.(2015•衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.三、解答题17.如图,是半圆的直径,过点作弦的垂线交半圆于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;CACAOBED18.在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。19.如图,点P在y轴上,交x轴于A、B两点,连结BP并延长交于C,过点C的直线交轴于,且的半径为,.

(1)求点的坐标;

(2)求证:是的切线;

20.(2015•德州)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【答案与解析】一、选择题

1.【答案】B;【解析】任意一个圆的内接三角形和外切三角形都可以作出无数个.①③正确,②④错误,故选B.2.【答案】D;【解析】作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°,而OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故选D.3.【答案】B;【解析】以实物或现实为背景,以与圆相关的位置关系或数量关系为考查目标.这样的考题,背景公平、现实、有趣,所用知识基本,有较高的效度与信度.4.【答案】D;【解析】通过比较两圆半径的和或差与圆心距的大小关系,判断两圆的位置关系.5-2=3>2,所以两圆位置关系是内含.5.【答案】B;【解析】圆周角是直角时,它所对的弦是直径.直径EF.6.【答案】C;【解析】横坐标相等的点的连线,平行于y轴;纵坐标相等的点的连线,平行于x轴.结合图形可以发现,由点(2,5)和(2,-3)、(-2,1)和(6,1)构成的弦都是圆的直径,其交点即为圆心(2,1).7.【答案】C;【解析】能够由切线性质、等腰三角形性质找出数量关系式.由AC切O于A,则∠OAB=35°,所以∠AOB=180°-2×35°=110°.8.【答案】C;【解析】设底面半径为r,母线长为,则,∴,∴,∴n=120,∴∠AOB=120°.二、填空题9.【答案】∠BAE=∠C或∠CAF=∠B.10.【答案】外切.11.【答案】147°;

【解析】因为DB是⊙O的切线,所以OA⊥DB,由∠AOM=66°,

得∠OAM=,∠DAM=90°+57°=147°.12.【答案】∠6,∠2,∠5.

【解析】本题中由弦AB=CD可知,因为同弧或等弧所对的圆周角相等,故有∠1=∠6=∠2=∠5.13.【答案】4cm或6cm;【解析】当点M在⊙O外部时,⊙O半径4(cm);当点M在⊙O内部时,⊙O半径.点与圆的位置关系不确定,分点M在⊙O外部、内部两种情况讨论.14.【答案】或;【解析】根据题意有两种情况:①当C点在A、O之间时,如图(1).由勾股定理OC=,故.②当C点在B、O之间时,如图(2).由勾股定理知,故.没有给定图形的问题,在画图时,一定要考虑到各种情况.15.【答案】100°;【解析】∠ADE=∠ACB=65°,∴∠BAC=180°-65°×2=50°,∠BOC=2∠BAC=100°.在前面的学习中,我们用到了圆内接四边形的性质(对角互补,外角等于内对角),在解一些客观性题目时,可以使用.16.【答案】1.6;【解析】如图:∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF=m,∴CD=1.6m.故答案为:1.6.三、解答题17.【答案与解析】AC与⊙O相切.

证明:∵弧BD是∠BED与∠BAD所对的弧,

∴∠BAD=∠BED,

∵OC⊥AD,

∴∠AOC+∠BAD=90°,

∴∠BED+∠AOC=90°,

即∠C+∠AOC=90°,

∴∠OAC=90°,

∴AB⊥AC,即AC与⊙O相切.18.【答案与解析】一小于直径的弦所对的弓形有两个:劣弧弓形与优弧弓形.如图,HG为⊙O的直径,且HG⊥AB,AB=16cm,HG=20cm故所求弓形的高为4cm或16cm19.【答案与解析】

(1)连结.

.

,.

是的直径,

.

,,

,,.

(2)过点

.

当时,,

.

,,

.

是的切线.

20.【答案与解析】(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;

2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;

3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;

4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;

5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.

【知识网络】

【要点梳理】要点一、圆的定义、性质及与圆有关的角

1.圆的定义

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合.

要点诠释:

①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;

②圆是一条封闭曲线.2.圆的性质

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.

(3)垂径定理及推论:

①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

③弦的垂直平分线过圆心,且平分弦对的两条弧.

④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.

⑤平行弦夹的弧相等.

要点诠释:

在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.两圆的性质

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.

圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半.

②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.

③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

⑤圆内接四边形的对角互补;外角等于它的内对角.

要点诠释:

(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.

(2)圆周角定理成立的前提条件是在同圆或等圆中.

要点二、与圆有关的位置关系1.判定一个点P是否在⊙O上

设⊙O的半径为,OP=,则有

点P在⊙O外;点P在⊙O上;点P在⊙O内.

要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点在同一个圆上的方法

当时,在⊙O上.

3.直线和圆的位置关系

设⊙O半径为R,点O到直线的距离为.

(1)直线和⊙O没有公共点直线和圆相离.

(2)直线和⊙O有唯一公共点直线和⊙O相切.

(3)直线和⊙O有两个公共点直线和⊙O相交.

4.切线的判定、性质

(1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线.

②到圆心的距离等于圆的半径的直线是圆的切线.

(2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点.

③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.

5.圆和圆的位置关系

设的半径为,圆心距.

(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离

.

(2)和没有公共点,且的每一个点都在内部内含

(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.

(4)和有唯一公共点,除这个点外,的每个点都在内部内切.

(5)和有两个公共点相交.

要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形

1.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.

(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.

(4)垂心:是三角形三边高线的交点.要点诠释:

(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;

(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).

(3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.2.圆内接四边形和外切四边形

(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.

要点四、圆中有关计算

1.圆中有关计算

圆的面积公式:,周长.

圆心角为、半径为R的弧长.

圆心角为,半径为R,弧长为的扇形的面积.

弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.

圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:

(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;

(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.

(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;

(4)扇形两个面积公式之间的联系:.

【典型例题】类型一、圆的基础知识【高清ID号:362179高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为.【答案】;【解析】由已知得BC∥x轴,则BC中垂线为

那么,△ABC外接圆圆心在直线x=1上,

设外接圆圆心P(1,a),则由PA=PB=r得到:PA2=PB2

即(1+1)2+(a-3)2=(1+2)2+(a+2)2

化简得4+a2-6a+9=9+a2+4a+4

解得a=0

即△ABC外接圆圆心为P(1,0)

则【总结升华】三角形的外心是三边中垂线的交点,由B、C的坐标知:圆心P(设△ABC的外心为P)必在直线x=1上;由图知:BC的垂直平分线正好经过(1,0),由此可得到P(1,0);连接PA、PB,由勾股定理即可求得⊙P的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,求CD的长.【答案与解析】作OF⊥CD于F,连接OD.∵AE=1,EB=5,∴AB=6.∵,∴OE=OA-AE=3-1=2.在Rt△OEF中,∵∠DEB=60°,∴∠EOF=30°,∴,∴.在Rt△DFO中,OF=,OD=OA=3,∴(cm).∵OF⊥CD,∴DF=CF,∴CD=2DF=cm.【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作OF⊥CD于F,构造Rt△OEF,求半径和OF的长;连接OD,构造Rt△OFD,求CD的长.举一反三:【变式】如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=.【答案】由OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是△ABC的中位线,BC=2MN=6.3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=.yxyxOABDC(第3题)【答案】65°.【解析】连结OD,则∠DOB=40°,设圆交y轴负半轴于E,得∠DOE=130°,∠OCD=65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】(2015•黑龙江)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60° B.120° C.60°或120° D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系【高清ID号:362179高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°,∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).

(1)求与直线相切时点P的坐标.

(2)请直接写出与直线相交、相离时x的取值范围.

【答案】(1)过作直线的垂线,垂足为.

当点在直线右侧时,,得,

(5,7.5).

当点在直线左侧时,,得,

(,).

当与直线相切时,点的坐标为(5,7.5)或(,).

(2)当时,与直线相交.

当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8,∴S阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,所在圆的圆心为O.车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【答案与解析】连接OB,过点O作OE⊥AB,垂足为E,交于点F,如图(2).由垂径定理,可知E是AB中点,F是的中点,∴,EF=2.设半径为R米,则OE=(R-2)m.在Rt△AOE中,由勾股定理,得.解得R=4.∴OE=2,,∴∠AOE=60°,∴∠AOB=120°.∴的长为(m).∴帆布的面积为(m2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以为底面的圆柱的侧面积.根据题意,应先求出所对的圆心角度数以及所在圆的半径,才能求的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.

①请你补全这个输水管道的圆形截面图;

②若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】①作法略.如图所示.

②如图所示,过O作OC⊥AB于D,交于C,

∵OC⊥AB,

∴.

由题意可知,CD=4cm.

设半径为xcm,则.

在Rt△BOD中,由勾股定理得:

∴.

∴.

即这个圆形截面的半径为10cm.

《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题

1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于().A.70°B.64°C.62°D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为().A.54mB.mC.mD.m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于().

A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是().

A.B.C.D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()

A.12.5寸B.13寸C.25寸D.26寸6.(2015•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为().A.80°B.100°C.80°或100°D.160°或200°8.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是().A.65°B.115°C.65°或115°D.130°或50°二、填空题9.如下左图,是的内接三角形,,点P在上移动(点P不与点A、C重合),则的变化范围是__________.

第9题图第10题图10.如图所示,EB、EC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.11.已知⊙O1与⊙O2的半径、分别是方程的两实根,若⊙O1与⊙O2的圆心距=5.则⊙O1与⊙O2的位置关系是____.12.(2015•巴彦淖尔)如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.14.已知正方形ABCD外接圆的直径为,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为________,面积为________.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为________,图(2)中4条弧的弧长的和为________;(2)求图(m)中n条弧的弧长的和为________(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4m的蒙古包,至少要________m2的毛毡.三、解答题17.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=,设SO=xm,则AS=2xm.∵AO=27,由勾股定理,得(2x)2-x2=272,解得(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.

∵矩形ABCD中,AB=2BC,AB=8cm,

∴AD=BC=4cm,∠DAF=90°,

,,

又AF=AD=4cm,

∴,

∴.4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.

根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,

知(寸),在Rt△AOE中,,

即,解得OA=13,进而求得CD=26(寸).

故选D.6.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为;圆周角的顶点在优弧上时,圆周角为.注意分情况讨论.8.【答案】C;【解析】连接OC、OB,则∠BOC=360°-90°-90°-50°=130°.点P在优弧上时,∠BPC=∠BOC=65°;点P在劣弧上时,∠BPC=180°-65°=115°.主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题9.【答案】;10.【答案】99°;【解析】由EB=EC,∠E=46°知,∠ECB=67°,从而∠BCD=180°-67°-32°=81°,

在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.11.【答案】相交;【解析】求出方程的两实根、分别是4、2,则-<<+,所以两圆相交.12.【答案】①②④;【解析】连接AD,AB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点D是BC的中点,即BD=CD,故②正确;∵AD是∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确;∵∠EBC=22.5°,2EC≠BE,AE=BE,∴AE≠2CE,③不正确;∵AE=BE,BE是直角边,BC是斜边,肯定不等,故⑤错误.综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】;;【解析】正方形ABCD外接圆的直径就是它的对角线,由此求得正方形边长为a.如图所示,设正八边形的边长为x.在Rt△AEL中,LE=x,AE=AL=,∴,,即正八边形的边长为..15.【答案】(1)π;2π;(2)(n-2)π;【解析】∵n边形内角和为(n-2)180°,前n条弧的弧长的和为个以某定点为圆心,以1为半径的圆周长,∴n条弧的弧长的和为.本题还有其他解法,比如:设各个扇形的圆心角依次为,,…,,则,∴n条弧长的和为.16.【答案】720π;【解析】∵S=πr2,∴9π=πr2,∴r=3.∴h1=4,∴,∴,.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OFH∵FH是⊙O的切线H∴OF⊥FH∵FH∥BC,∴OF垂直平分BC∴∴AF平分∠BAC.H(2)由(1)及题设条件可知H∠1=∠2,∠4=∠3,∠5=∠2∴∠1+∠4=∠2+∠3∴∠1+∠4=∠5+∠3∠FDB=∠FBD∴BF=FD.18.【答案与解析】证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.19.【答案与解析】解:∵公共弦AB=120.20.【答案与解析】(1)如选命题①.证明:在图(1)中,∵∠BON=60°,∴∠1+∠2=60°.∵∠3+∠2=60°,∴∠1=∠3.又∵BC=CA,∠BCM=∠CAN=60°,∴△BCM≌△CAN,∴BM=CM.如选命题②.证明:在图(2)中,∵∠BON=90°,∴∠1+∠2=90°.∵∠3+∠2=90°,∴∠1=∠3.又∵BC=CD,∠BCM=∠CDN=90°,∴△BCM≌△CDN,∴BM=CN.如选命题③.证明:在图(3)中,∵∠BON=108°,∴∠1+∠2=108°.∵∠2+∠3=108°,∴∠1=∠3.又∵BC=CD,∠BCM=∠CDN=108°,∴△BCM≌△CDN,∴BM=CN.(2)①答:当∠BON=时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴BM=CN.《圆》全章复习与巩固—知识讲解(提高)1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;

2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;

3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;

4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;

5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.

【知识网络】

【要点梳理】要点一、圆的定义、性质及与圆有关的角

1.圆的定义

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合.

要点诠释:

①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;

②圆是一条封闭曲线.2.圆的性质

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.

(3)垂径定理及推论:

①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

③弦的垂直平分线过圆心,且平分弦对的两条弧.

④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.

⑤平行弦夹的弧相等.

要点诠释:

在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.两圆的性质

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.

圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半.

②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.

③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

⑤圆内接四边形的对角互补;外角等于它的内对角.

要点诠释:

(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.

(2)圆周角定理成立的前提条件是在同圆或等圆中.

要点二、与圆有关的位置关系1.判定一个点P是否在⊙O上

设⊙O的半径为,OP=,则有

点P在⊙O外;点P在⊙O上;点P在⊙O内.

要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点在同一个圆上的方法

当时,在⊙O上.

3.直线和圆的位置关系

设⊙O半径为R,点O到直线的距离为.

(1)直线和⊙O没有公共点直线和圆相离.

(2)直线和⊙O有唯一公共点直线和⊙O相切.

(3)直线和⊙O有两个公共点直线和⊙O相交.

4.切线的判定、性质

(1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线.

②到圆心的距离等于圆的半径的直线是圆的切线.

(2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点.

③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.

5.圆和圆的位置关系

设的半径为,圆心距.

(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离

.

(2)和没有公共点,且的每一个点都在内部内含

(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.

(4)和有唯一公共点,除这个点外,的每个点都在内部内切.

(5)和有两个公共点相交.

要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形

1.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.

(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.

(4)垂心:是三角形三边高线的交点.要点诠释:

(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;

(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).

(3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.2.圆内接四边形和外切四边形

(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.

要点四、圆中有关计算

1.圆中有关计算

圆的面积公式:,周长.

圆心角为、半径为R的弧长.

圆心角为,半径为R,弧长为的扇形的面积.

弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.

圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:

(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;

(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.

(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;

(4)扇形两个面积公式之间的联系:.

【典型例题】类型一、圆的基础知识1.如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点,设OP=x,则的取值范围是().A.-1≤≤1B.≤≤C.0≤≤D.>【答案】B;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,

由切线的性质,得∠OQP′=90°,

∵OA∥P′Q,

∴∠OP′Q=∠AOB=45°,

∴△OQP′为等腰直角三角形,

在Rt△OQP′中,OQ=1,

OP′=,

∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,

当点P在x轴负半轴即点P向左侧移动时,结果为≤OP≤0.

故答案为:≤OP≤.【点评】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1B.0<x≤1C.-≤x<0或0<x≤D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,

∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,

∴OD=DP′=1,

OP′=,

∴0<OP≤,

同理可得,当OP与x轴负半轴相交时,

-≤OP<0,

∴-≤OP<0,或0<OP≤.

故选C.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且,BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC,∵AB是⊙O的直径,弦CG⊥AB,∴.∵,∴.∴∠C=∠CBE.∴CE=BE.证法二:如图(2),作ON⊥BF,垂足为N,连接OE.∵AB是⊙O的直径,且AB⊥CG,∴.∵,∴.∴BF=CG,ON=OD.∵∠ONE=∠ODE=90°,OE=OE,ON=OD,∴△ONE≌△ODE,∴NE=DE.∵,,∴BN=CD,∴BN-EN=CD-ED,∴BE=CE.证法三:如图(3),连接OC交BF于点N.∵,∴OC⊥BF.∵AB是⊙O的直径,CG⊥AB,∵,.∴,.∵OC=OB,∴OC-ON=OB-OD,即CN=BD.又∠CNE=∠BDE=90°,∠CEN=∠BED,∴△CNE≌△BDE,∴CE=BE.【点评】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【高清ID号:362179高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】【变式】如图所示,在⊙O内有折线OABC,其中OA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论