2024中考数学几何模型12讲第9讲隐圆模型含解析_第1页
2024中考数学几何模型12讲第9讲隐圆模型含解析_第2页
2024中考数学几何模型12讲第9讲隐圆模型含解析_第3页
2024中考数学几何模型12讲第9讲隐圆模型含解析_第4页
2024中考数学几何模型12讲第9讲隐圆模型含解析_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024中考数学几何模型12讲第9讲隐圆模型含解析中考数学几何模型9:隐圆模型名师点睛拨开云雾开门见山【点睛1】触发隐圆模型的类型(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P运动轨迹为过A、B、C三点的圆备注:点P在优弧、劣弧上运动皆可(4)四点共圆模型①若动角∠A+动角∠C=180°原理:圆内接四边形对角互补则A、B、C、D四点共圆备注:点A与点C在线段AB异侧(5)四点共圆模型②固定线段AB所对同侧动角∠P=∠C原理:弦AB所对同侧圆周角恒相等则A、B、C、P四点共圆备注:点P与点C需在线段AB同侧【点睛2】圆中旋转最值问题条件:线段AB绕点O旋转一周,点M是线段AB上的一动点,点C是定点(1)求CM最小值与最大值(2)求线段AB扫过的面积(3)求最大值与最小值作法:如图建立三个同心圆,作OM⊥AB,B、A、M运动路径分别为大圆、中圆、小圆结论:①CM1最小,CM3最大②线段AB扫过面积为大圆与小圆组成的圆环面积③最小值以AB为底,CM1为高;最大值以AB为底,CM2为高典题探究启迪思维探究重点例题1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A`MN,连接A`C,则A`C长度的最小值是__________.变式练习>>>1.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是__________.例题2.如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为________.变式练习>>>2.如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.例题3.如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是________.变式练习>>>3.如图,Rt△ABC中,AB⊥BC,AB=8,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值是_________.例题4.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为_________.变式练习>>>4.如图,正方形ABCD的边长为4,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为.例题5.如图,等边△ABC边长为2,E、F分别是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为________.变式练习>>>5.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是________.例题6.如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5 B.4 C.3 D.2变式练习>>>6.如图,BE,CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.例题7.如图,在四边形ABCD中,∠BCD=90°,AC为对角线,过点D作DF⊥AB,垂足为E,交CB延长线于点F,若AC=CF,∠CAD=∠CFD,DF﹣AD=2,AB=6,则ED的长为.变式练习>>>7.(1)如图1,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.(2)如图2,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC=6,则BE的长为.图1图2例题8.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.变式练习>>>8.如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.达标检测领悟提升强化落实1.如图,AB是半圆O的直径,点C在半圆O上,AB=10,AC=8.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.2.如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3,5,求三角形OBE的面积.3.如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为________.4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,CE⊥AD于E,EF⊥AB交BC于点F,则CF的最大值是_________.5.如图,△ABC为等边三角形,AB=3,若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为_________.6.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是_________.7.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的最小值为_________.8.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为_________.9.如图,在矩形ABCD中,已知AB=4,BC=8,点O、P分别是边AB、AD的中点,点H是边CD上的一个动点,连接OH,将四边形OBCH沿OH折叠,得到四边形OFEH,连接PE,则PE长度的最小值是_________.10.如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.中考数学几何模型9:隐圆模型名师点睛拨开云雾开门见山【点睛1】触发隐圆模型的类型(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P运动轨迹为过A、B、C三点的圆备注:点P在优弧、劣弧上运动皆可(4)四点共圆模型①若动角∠A+动角∠C=180°原理:圆内接四边形对角互补则A、B、C、D四点共圆备注:点A与点C在线段AB异侧(5)四点共圆模型②固定线段AB所对同侧动角∠P=∠C原理:弦AB所对同侧圆周角恒相等则A、B、C、P四点共圆备注:点P与点C需在线段AB同侧【点睛2】圆中旋转最值问题条件:线段AB绕点O旋转一周,点M是线段AB上的一动点,点C是定点(1)求CM最小值与最大值(2)求线段AB扫过的面积(3)求最大值与最小值作法:如图建立三个同心圆,作OM⊥AB,B、A、M运动路径分别为大圆、中圆、小圆结论:①CM1最小,CM3最大②线段AB扫过面积为大圆与小圆组成的圆环面积③最小值以AB为底,CM1为高;最大值以AB为底,CM2为高典题探究启迪思维探究重点例题1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A`MN,连接A`C,则A`C长度的最小值是__________.【分析】考虑△AMN沿MN所在直线翻折得到△A’MN,可得MA’=MA=1,所以A’轨迹是以M点为圆心,MA为半径的圆弧.连接CM,与圆的交点即为所求的A’,此时A’C的值最小.构造直角△MHC,勾股定理求CM,再减去A’M即可,答案为.变式练习>>>1.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是__________.【分析】考虑到将△FCE沿EF翻折得到△FPE,可得P点轨迹是以F点为圆心,FC为半径的圆弧.过F点作FH⊥AB,与圆的交点即为所求P点,此时点P到AB的距离最小.由相似先求FH,再减去FP,即可得到PH.答案为1.2.例题2.如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为________.【分析】连接OP,根据△APB为直角三角形且O是斜边AB中点,可得OP是AB的一半,若AB最小,则OP最小即可.连接OC,与圆C交点即为所求点P,此时OP最小,AB也取到最小值.答案为4.变式练习>>>2.如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.答案为8.【分析】F点轨迹是以E点为圆心,EA为半径的圆,作点D关于BC对称点D’,连接PD’,PF+PD化为PF+PD’.连接ED’,与圆的交点为所求F点,与BC交点为所求P点,勾股定理先求ED‘,再减去EF即可.例题3.如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是________.【分析】根据条件可知:∠DAG=∠DCG=∠ABE,易证AG⊥BE,即∠AHB=90°,所以H点轨迹是以AB为直径的圆弧当D、H、O共线时,DH取到最小值,勾股定理可求.答案为变式练习>>>3.如图,Rt△ABC中,AB⊥BC,AB=8,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值是_________.答案为【分析】∵∠PBC+∠PBA=90°,∠PBC=∠PAB,∴∠PAB+∠PBA=90°,∴∠APB=90°,∴P点轨迹是以AB为直径的圆弧.当O、P、C共线时,CP取到最小值,勾股定理先求OC,再减去OP即可.例题4.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为_________.【分析】连接CE,由于CD为直径,故∠CED=90°,考虑到CD是动线段,故可以将此题看成定线段CB对直角∠CEB.取CB中点M,所以E点轨迹是以M为圆心、CB为直径的圆弧.连接AM,与圆弧交点即为所求E点,此时AE值最小,.变式练习>>>4.如图,正方形ABCD的边长为4,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为.【分析】首先考虑整个问题中的不变量,仅有AE=CF,BG⊥EF,但∠BGE所对的BE边是不确定的.重点放在AE=CF,可得EF必过正方形中心O点,连接BD,与EF交点即为O点.∠BGO为直角且BO边为定直线,故G点轨迹是以BO为直径的圆.记BO中点为M点,当A、G、M共线时,AG取到最小值,利用Rt△AOM勾股定理先求AM,再减去GM即可.答案为例题5.如图,等边△ABC边长为2,E、F分别是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为________.答案为【分析】由BE=CF可推得△ABE≌△BCF,所以∠APF=60°,但∠APF所对的边AF是变化的.所以考虑∠APB=120°,其对边AB是定值.所以如图所示,P点轨迹是以点O为圆心的圆弧.(构造OA=OB且∠AOB=120°)当O、P、C共线时,可得CP的最小值,利用Rt△OBC勾股定理求得OC,再减去OP即可.变式练习>>>5.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是________.【分析】先作图,如下答案为:条件不多,但已经很明显,AB是定值,∠C=60°,即定边对定角.故点C的轨迹是以点O为圆心的圆弧.(作AO=BO且∠AOB=120°)题意要求∠A>∠B,即BC>AC,故点C的轨迹如下图.当BC为直径时,BC取到最大值为,考虑∠A为△ABC中最大角,故BC为最长边,BC>AB=4.无最小值.例题6.如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5 B.4 C.3 D.2【解答】解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,∴△COM≌△DON(AAS),∴OM=ON,∴四边形OMEN是正方形,设正方形ABCD的边长为2a,∵∠DCE=30°,∠CED=90°∴DE=a,CE=a,亦可按隐圆模型解答设DN=x,x+DE=CE﹣x,解得:x=,∴NE=x+a=,∵OE=NE,∴=•,∴a=1,∴S正方形ABCD=4故选:B.变式练习>>>6.如图,BE,CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.例题7.如图,在四边形ABCD中,∠BCD=90°,AC为对角线,过点D作DF⊥AB,垂足为E,交CB延长线于点F,若AC=CF,∠CAD=∠CFD,DF﹣AD=2,AB=6,则ED的长为.【解答】解:∵∠CAD=∠CFD,∴点A,F,C,D四点共圆,∴∠FAD+∠DCF=180°,∠FAC=∠FDC,∵∠DCF=90°,∴∠FAD=90°,∵AC=FC,∴∠FAC=∠AFC,∵DF⊥AB,∴∠ABF+∠BFE=∠CDF+∠BFE=90°,∴∠ABF=∠CDF,∴∠AFB=∠ABF,∴AF=AB=6,∵DF﹣AD=2,∴DF=AD+2,∵DF2=AF2+AD2,∴(2+AD)2=62+AD2,解得:AD=8,∴DF=10,∵∠FAD=90°,AE⊥DF,∴△ADE∽△DAF,∴=,∴DE===,故答案为:.变式练习>>>7.(1)如图1,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.(2)如图2,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC=6,则BE的长为3.图1图2证明:(1)如图,连接DB、DF.∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,∴∠CBF=45°,∠DBC=45°,∴∠DBF=90°.又∵∠DEF=90°,∴D、E、B、F四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).∴△DEF是等腰直角三角形.∴FE=DE.(2)解:作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图)∵∠ADF=90°,∴AF为⊙O直径,∵BD为正方形ABCD对角线,∴∠EDF=∠EAF=45°,∴点E在⊙O上,∴∠AEF=90°,∴△AEF为等腰直角三角形,∴AE=EF,在△ABE与△CBE中,∴△ABE≌△CBE(SAS),∴AE=CE,∴CE=EF,∵EM⊥CF,CF=6,∴CM=CF=3,∵EN⊥BC,∠NCM=90°,∴四边形CMEN是矩形,∴EN=CM=3,∵∠EBN=45°,∴BE=EN=3,故答案为:3.例题8.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.[解析]如图,过点B作BD⊥AC,D为垂足,因为△ABC为锐角三角形,所以点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=;①当P在AC上运动与AB垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.变式练习>>>8.如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【分析】考虑l是经过点P的直线,且△ABC沿直线l折叠,所以B’轨迹是以点P为圆心,PB为半径的圆弧.考虑△ACB’面积最大,因为AC是定值,只需B’到AC距离最大即可.过P作作PH⊥AC交AC于H点,与圆的交点即为所求B’点,先求HB’,再求面积.答案为.达标检测领悟提升强化落实1.如图,AB是半圆O的直径,点C在半圆O上,AB=10,AC=8.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.答案为:【分析】E是动点,E点由点C向AD作垂线得来,∠AEC=90°,且AC是一条定线段,所以E点轨迹是以AC为直径的圆弧.当B、E、M共线时,BE取到最小值.连接BC,勾股定理求BM,再减去EM即可.2.如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3,5,求三角形OBE的面积.3.如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为________.答案为:【分析】∠AFB=90°且AB是定线段,故F点轨迹是以AB中点O为圆心、AB为直径的圆.考虑PC+PF是折线段,作点C关于AD的对称点C’,化PC+PF为PC’+PF,当C’、P、F、O共线时,取到最小值.4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,CE⊥AD于E,EF⊥AB交BC于点F,则CF的最大值是_________.【分析】∠AEC=90°且AC为定值,故E点轨迹是以AC为直径的圆弧.考虑EF⊥AB,且E点在圆上,故当EF与圆相切的时候,CF取到最大值.连接OF,易证△OCF≌△OEF,∠COF=30°,故CF可求.答案为5.如图,△ABC为等边三角形,AB=3,若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为_________.答案为6.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是﹣2≤BE<3.【解答】解:如图,由题意知,∠AEC=90°,∴E在以AC为直径的⊙M的上(不含点C、可含点N),∴BE最短时,即为连接BM与⊙M的交点(图中点E′点),∵AB=5,AC=4,∴BC=3,CM=2,则BM===,∴BE长度的最小值BE′=BM﹣ME′=﹣2,BE最长时,即E与C重合,∵BC=3,且点E与点C不重合,∴BE<3,综上,﹣2≤BE<3,故答案为:﹣2≤BE<3.7.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的最小值为8.【解答】解:解:如图,连接CE,∴∠CED=∠CEA=90°,∴点E在以AC为直径的⊙Q上,∵AC=10,∴QC=QE=5,当点Q、E、B共线时BE最小,∵BC=12,∴QB==13,∴BE=QB﹣QE=8,∴BE的最小值为8,故答案为8.8.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为2﹣2.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为2,∴当点O、E、C共线时,CE最小,如图2,在Rt△AOC中,∵OA=2,AC=4,∴OC==2,∴CE=OC﹣OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为2﹣2.9.如图,在矩形ABCD中,已知AB=4,BC=8,点O、P分别是边AB、AD的中点,点H是边CD上的一个动点,连接OH,将四边形OBCH沿OH折叠,得到四边形OFEH,连接PE,则PE长度的最小值是2﹣2.【解答】解:如图,连接EO、PO、OC.∵四边形ABCD是矩形,∴∠B=∠OAP=90°,在Rt△OBC中,BC=8,OB=2,∴OC==2,在Rt△AOP中,OA=2,PA=4,∴OP==2,∵OE=OC=2,PE≥OE﹣OP,∴PE的最小值为2﹣2.故答案为2﹣2.10.如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.【解答】解:∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=AD×CD+AC×h=×4×3+×5×h=h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,即点E,点G,点H共线.由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC=,在Rt△AEH中,AE=2,sin∠BAC=,∴EH=AE=,∴h=EH﹣EG=﹣1=,∴S四边形AGCD最小=h+6=+6=.故答案为:.中考数学几何模型10:胡不归最值模型中考数学几何模型10:胡不归最值模型名师点睛拨开云雾开门见山在前面的最值问题中往往都是求某个线段最值或者形如PA+PB最值,除此之外我们还可能会遇上形如“PA+kP”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?【模型建立】如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小.【问题分析】,记,即求BC+kAC的最小值.【问题解决】构造射线AD使得sin∠DAN=k,即,CH=kAC.将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【模型总结】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.典题探究启迪思维探究重点例题1.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是_______.【分析】本题关键在于处理“”,考虑tanA=2,△ABE三边之比为,,故作DH⊥AB交AB于H点,则.问题转化为CD+DH最小值,故C、D、H共线时值最小,此时.【小结】本题简单在于题目已经将BA线作出来,只需分析角度的三角函数值,作出垂线DH,即可解决问题,若稍作改变,将图形改造如下:则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.变式练习>>>1.如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则的最小值等于________.【分析】考虑如何构造“”,已知∠A=60°,且sin60°=,故延长AD,作PH⊥AD延长线于H点,即可得,将问题转化为:求PB+PH最小值.当B、P、H三点共线时,可得PB+PH取到最小值,即BH的长,解直角△ABH即可得BH长.例题2.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A. B. C. D.【解答】解:∵的度数为120°,∴∠C=60°,∵AC是直径,∴∠ABC=90°,∴∠A=30°,作BK∥CA,DE⊥BK于E,OM⊥BK于M,连接OB.∵BK∥AC,∴∠DBE=∠BAC=30°,在Rt△DBE中,DE=BD,∴OD+BD=OD+DE,根据垂线段最短可知,当点E与M重合时,OD+BD的值最小,最小值为OM,∵∠BAO=∠ABO=30°,∴∠OBM=60°,在Rt△OBM中,∵OB=2,∠OBM=60°,∴OM=OB•sin60°=,∴DB+OD的最小值为,故选:B.变式练习>>>2.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=﹣.【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴PA=PG,∴PA+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.例题3.等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边在x轴上,BC边的高OA在Y轴上.一只电子虫从A出发,先沿y轴到达G点,再沿GC到达C点,已知电子虫在Y轴上运动的速度是在GC上运动速度的2倍,若电子虫走完全程的时间最短,则点G的坐标为(0,).【解答】解:如图作GM⊥AB于M,设电子虫在CG上的速度为v,电子虫走完全全程的时间t=+=(+CG),在Rt△AMG中,GM=AG,∴电子虫走完全全程的时间t=(GM+CG),当C、G、M共线时,且CM⊥AB时,GM+CG最短,此时CG=AG=2OG,易知OG=•×6=所以点G的坐标为(0,﹣).故答案为:(0,﹣).变式练习>>>3.如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为()A.(0,) B.(0,) C.(0,) D.(0,)解:假设P在AD的速度为3V,在CD的速度为1V,总时间t=+=(+CD),要使t最小,就要+CD最小,因为AB=AC=3,过点B作BH⊥AC交AC于点H,交OA于D,易证△ADH∽△ACO,所以==3,所以=DH,因为△ABC是等腰三角形,所以BD=CD,所以要+CD最小,就是要DH+BD最小,就要B、D、H三点共线就行了.因为△AOC∽△BOD,所以=,即=,所以OD=,所以点D的坐标应为(0,).例题4.直线y=与抛物线y=(x﹣3)2﹣4m+3交于A,B两点(其中点A在点B的左侧),与抛物线的对称轴交于点C,抛物线的顶点为D(点D在点C的下方),设点B的横坐标为t(1)求点C的坐标及线段CD的长(用含m的式子表示);(2)直接用含t的式子表示m与t之间的关系式(不需写出t的取值范围);(3)若CD=CB.①求点B的坐标;②在抛物线的对称轴上找一点F,使BF+CF的值最小,则满足条件的点F的坐标是(3,).【解答】解:(1)抛物线y=(x﹣3)2﹣4m+3的对称轴为x=3,令x=3,则有y=×3=4,即点C的坐标为(3,4).抛物线y=(x﹣3)2﹣4m+3的顶点D的坐标为(3,﹣4m+3),∵点D在点C的下方,∴CD=4﹣(﹣4m+3)=4m+1.(2)∵点B在直线y=上,且其横坐标为t,则点B的坐标为(t,t),将点B的坐标代入抛物线y=(x﹣3)2﹣4m+3中,得:t=(t﹣3)2﹣4m+3,整理,得:m=﹣t+3.(3)①依照题意画出图形,如图1所示.过点C作CE∥x轴,过点B作BE∥y轴交CE于点E.∵直线BC的解析式为y=x,∴BE=CE,由勾股定理得:BC==CE.∵CD=CB,∴有4m+1=(t﹣3)=(+﹣3),解得:m=﹣4,或m=1.当m=﹣4时,+4×(﹣4)=﹣<0,不合适,∴m=1,此时t=+=6,y=×6=8.故此时点B的坐标为(6,8).②作B点关于对称轴的对称点B′,过点F作FM⊥BC于点M,连接B′M、BB交抛物线对称轴于点N,如图2所示.∵直线BC的解析式为y=x,FM⊥BC,∴tan∠FCM==,∴sin∠FCM=.∵B、B′关于对称轴对称,∴BF=B′F,∴BF+CF=B′F+FM.当点B′、F、M三点共线时B′F+FM最小.∵B点坐标为(6,8),抛物线对称轴为x=3,∴B′点的坐标为(0,8).又∵B′M⊥BC,∴tan∠NB′F=,∴NF=B′N•tan∠NB′F=,∴点F的坐标为(3,).故答案为:(3,).变式练习>>>4.如图1,在平面直角坐标系中将y=2x+1向下平移3个单位长度得到直线l1,直线l1与x轴交于点C;直线l2:y=x+2与x轴、y轴交于A、B两点,且与直线l1交于点D.(1)填空:点A的坐标为(﹣2,0),点B的坐标为(0,2);(2)直线l1的表达式为y=2x﹣2;(3)在直线l1上是否存在点E,使S△AOE=2S△ABO?若存在,则求出点E的坐标;若不存在,请说明理由.(4)如图2,点P为线段AD上一点(不含端点),连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.【解答】解:(1)直线l2:y=x+2,令y=0,则x=﹣2,令y=0,则x=2,故答案为(﹣2,0)、(0,2);(2)y=2x+1向下平移3个单位长度得到直线l1,则直线l1的表达式为:y=2x﹣2,故:答案为:y=2x﹣2;(3)∵S△AOE=2S△ABO,∴yE=2OB=4,将yE=4代入l1的表达式得:4=2x﹣2,解得:x=3,则点E的坐标为(3,4);(4)过点P、C分别作y轴的平行线,分别交过点D作x轴平行线于点H、H′,H′C交BD于点P′,直线l2:y=x+2,则∠ABO=45°=∠HBD,PH=PD,点H在整个运动过程中所用时间=+=PH+PC,当C、P、H在一条直线上时,PH+PC最小,即为CH′=6,点P坐标(1,3),故:点H在整个运动过程中所用最少时间为6秒,此时点P的坐标(1,3).例题5.已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在(1)的条件下,抛物线上存在点P,使得△ACP是以AC为直角边的直角三角形,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)∵y=a(x+3)(x﹣1),∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),∵直线y=﹣x+b经过点A,∴b=﹣3,∴y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5),∵点D在抛物线上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)∵A的坐标为(﹣3,0),C(0,3),∴直线AC的解析式为:y=x+3,①∵△ACP是以AC为直角边的直角三角形,∴CP⊥AC,∴设直线CP的解析式为:y=﹣x+m,把C(0,3)代入得m=3,∴直线CP的解析式为:y=﹣x+3,解得,(不合题意,舍去),∴P(﹣,);②∵△ACP是以AC为直角边的直角三角形,∴AP⊥AC,∴设直线CP的解析式为:y=﹣x+n,把A(﹣3,0)代入得n=﹣,∴直线AP的解析式为:y=﹣x﹣,解y=得,,∴P(,﹣),综上所述:点P的坐标为(﹣,)或(,﹣);(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).变式练习>>>5.如图,已知抛物线y=﹣x2+bx+c交x轴于点A(2,0)、B(﹣8,0),交y轴于点C,过点A、B、C三点的⊙M与y轴的另一个交点为D.(1)求此抛物线的表达式及圆心M的坐标;(2)设P为弧BC上任意一点(不与点B,C重合),连接AP交y轴于点N,请问:AP•AN是否为定值,若是,请求出这个值;若不是,请说明理由;(3)延长线段BD交抛物线于点E,设点F是线段BE上的任意一点(不含端点),连接AF.动点Q从点A出发,沿线段AF以每秒1个单位的速度运动到点F,再沿线段FB以每秒个单位的速度运动到点B后停止,问当点F的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)抛物线解析式为y=﹣(x+8)(x﹣2),即y=﹣x2﹣x+4;当x=0时,y=﹣x2﹣x+4=4,则C(0,4)∴BC=4,AC=2,AB=10,∵BC2+AC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴AB为直径,∴圆心M点的坐标为(﹣3,0);(2)以AP•AN为定值.理由如下:如图1,∵AB为直径,∴∠APB=90°,∵∠APB=∠AON,∠NAO=∠BAP,∴△APB∽△AON.∴AN:AB=AO:AP,∴AN•AP=AB•AO=20,所以AP•AN为定值,定值是20;(3)∵AB⊥CD,∴OD=OC=4,则D(0,﹣4),易得直线BD的解析式为y=﹣x﹣4,过F点作FG⊥x轴于G,如图2,∵FG∥OD,∴△BFG∽△BDO,∴=,即===,∴点Q沿线段FB以每秒个单位的速度运动到点B所用时间等于点Q以每秒1个单位的速度运动到G点的时间,∴当AF+FG的值最小时,点Q在整个运动过程中所用时间最少,作∠EBI=∠ABE,BI交y轴于I,作FH⊥BI于H,则FH=FG,∴AF+FG=AF+FH,当点A、F、H共线时,AF+FH的值最小,此时AH⊥BI,如图2,作DK⊥BI,垂足为K,∵BE平分∠ABI,∴DK=DO=4,设DI=m,∵∠DIK=∠BIO,∴△IDK∽△IBO,∴===,∴BI=2m,在Rt△OBI中,82+(4+m)2=(2m)2,解得m1=4(舍去),m2=,∴I(0,﹣),设直线BI的解析式为y=kx+n,把B(﹣8,0),I(0,﹣)代入得,解得,∴直线BI的解析式为y=﹣x﹣,∵AH⊥BI,∴直线AH的解析式可设为y=x+q,把A(2,0)代入得+q=0,解得q=﹣,∴直线AH的解析式为y=x﹣,解方程组,解得,∴F(﹣2,﹣3),即当点F的坐标是(﹣2,﹣3)时,点Q在整个运动过程中所用时间最少.达标检测领悟提升强化落实1.如图,在平面直角坐标系中,点,点P为x轴上的一个动点,当最小时,点P的坐标为___________.[答案]:2.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,点M为对角线BD(不含点B)上的一动点,则的最小值为___________.[答案]:3.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点坐标;(2)点M为抛物线的对称轴上的一个动点,若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,求点M的坐标;(3)若P为y轴上的一个动点,连接PD,求PB+PD的最小值.【解答】解:(1)由题意,解得,∴抛物线解析式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣)2﹣,∴顶点坐标(,﹣);(2)设点M的坐标为(,y).∵A(﹣1,0),B(0,﹣),∴AB2=1+3=4.①以A为圆心AB为半径画弧与对称轴有两个交点,此时AM=AB,则(+1)2+y2=4,解得y=±,即此时点M的坐标为(,)或(,﹣);②以B为圆心AB为半径画弧与对称轴有两个交点,此时BM=AB,则()2+(y+)2=4,解得y=﹣+或y=﹣﹣,即此时点M的坐标为(,﹣+)或(,﹣﹣);③线段AB的垂直平分线与对称轴有一个交点,此时AM=BM,则(+1)2+y2=()2+(y+)2,解得y=﹣,即此时点M的坐标为(,﹣).综上所述,满足条件的点M的坐标为(,)或(,﹣)或(,﹣+)或(,﹣﹣)或(,﹣);(3)如图,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO==,∴∠ABO=30°,∴PH=PB,∴PB+PD=PH+PD=DH,∴此时PB+PD最短(垂线段最短).在Rt△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°=,∴DH=,∴PB+PD的最小值为.4.【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?【特例分析】若n=2,则时间t=+,当a为定值时,问题转化为:在BC上确定一点D,使得+的值最小.如图②,过点C做射线CM,使得∠BCM=30°.(1)过点D作DE⊥CM,垂足为E,试说明:DE=;(2)请在图②中画出所用时间最短的登陆点D′.【问题解决】(3)请你仿照“特例分析”中的相关步骤,解决图①中的问题.(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等)【综合运用】(4)如图③,抛物线y=﹣x2+x+3与x轴分别交于A,B两点,与y轴交于点C,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请求出最少时间和此时点F的坐标.【解答】解:(1)如图①,∵DE⊥CM,∴∠DEC=90°,在Rt△BCM中,DE=CDsin30°=CD;(2)如图①过点A作AE′⊥CM交BC于点D′,则点D′即为所用时间最短的登陆点;(3)如图②,过点C作射线CM,使得sin∠BCM=,过点A作AE⊥CM,垂足为E交BC于点D,则点D为为所用时间最短的登陆点;(4)由题意得:t==EF+CF,过点C作CD∥x轴交抛物线于点D,过点F作GF⊥CD交CD于点G,∠ACB=∠DCB=α,sin∠ABC==,则EF=CF,EF+CF=EF+FH,故当E、F、H三点共线且与CD垂直时,t最小,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,点E是OB中点,其坐标为:(3,0),当x=3时,对于y=﹣x+3,y=,点F坐标为(3,),t==EF+CF,当H、F、E三点共线时,EF+FH=OC=3,即:最小时间为3秒.5.如图,△ABC是等边三角形.(1)如图1,AH⊥BC于H,点P从A点出发,沿高线AH向下移动,以CP为边在CP的下方作等边三角形CPQ,连接BQ.求∠CBQ的度数;(2)如图2,若点D为△ABC内任意一点,连接DA,DB,DC.证明:以DA,DB,DC为边一定能组成一个三角形;(3)在(1)的条件下,在P点的移动过程中,设x=AP+2PC,点Q的运动路径长度为y,当x取最小值时,写出x,y的关系,并说明理由.【解答】(1)解:如图1中∵△ABC是等边三角形,AH⊥BC,∴∠CAP=∠BAC=30°,CA=CB,∠ACB=60°,∵△PCQ是等边三角形,∴CP=CQ,∠PCQ=∠ACB=60°,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴∠CBQ=∠CAP=30°.(2)证明:如图2中,将△ADC绕当A顺时针旋转60°得到△ABQ,连接DQ.∵△ACD≌△ABQ,∴AQ=AD,CD=BQ,∵∠DAQ=60°,∴△ADQ是等边三角形,∴AD=DQ,∴DA,DB,DC为边一定能组成一个三角形(图中△BDQ).(3)如图3中,作PE⊥AB于E,CF⊥AB于F交AH于G.∵PE=PA,∴PA+2PC=2(PA+PC)=2(PE+PC),根据垂线段最短可知,当E与F重合,P与G重合时,PA+2PC的值最小,最小值为2CF.由(1)可知△ACP≌△BCQ,可得BQ=PA,∴PA=BQ=AG=CG=y,FG=y,∴x=2(y+y),∴y=x.6.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.∴抛物线的函数表达式为:y=(x+2)(x﹣4).即y=x2﹣x﹣.(2)由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠ABC=tan∠PAB,即:=,∴y=x+.∴P(x,x+),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+,整理得:x2﹣4x﹣12=0,解得:x=6或x=﹣2(与点A重合,舍去),∴P(6,2k).∵△ABC∽△PAB,=,∴=,解得k=±,∵k>0,∴k=,综上所述,k=或k=.(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∥AB,AH⊥DK,AH交直线BD于点F,∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=,∵lBD:y=﹣x+,∴FX=AX=﹣2,∴F(﹣2,).7.已如二次函数y=﹣x2+2x+3的图象和x轴交于点A、B(点A在点B的左侧),与y轴交于点C,(1)如图1,P是直线BC上方抛物线上一动点(不与B、C重合)过P作PQ∥x轴交直线BC于Q,求线段PQ的最大值;(2)如图2,点G为线段OC上一动点,求BG+CG的最小值及此时点G的坐标;(3)如图3,在(2)的条件下,M为直线BG上一动点,N为x轴上一动点,连接AM,MN,求AM+MN的最小值.【解答】解:(1)令y=0,即:﹣x2+2x+3=0,解得:x=3或﹣1,即点A、B的坐标分比为(﹣1,0)、(3,0),令x=0,则y=3,则点C的坐标为(0,3),直线BC过点C(0,3),则直线表达式为:y=kx+3,将点B坐标代入上式得:0=3k+3,解得:k=﹣1,则直线BC的表达式为:y=﹣x+3,设点P的坐标为(m,n),n=﹣m2+2m+3,则点Q坐标为(3﹣n,n),则PQ=m﹣(3﹣n)=﹣m2+3m,∵a=﹣1<0,则PQ有最大值,当m=﹣=,PQ取得最大值为;(2)过直线CG作∠GCH=α,使CH⊥GH,当sinα=时,HG=GC,则BG+CG的最小值即为HG+GB的最小值,当B、H、G三点共线时,HG+GB最小,则∠GBO=α,∵sinα=,则cosα=,tanα=,OG=OB•tanα=3×=,即点G(0,),CG=3﹣=,而BG=,BG+CG的最小值为:;(3)作点A关于直线BG的对称点A′,过A′作A′N⊥x轴,交BG于点M,交x轴于点N,则此时AM+MN取得最小值,即为A′N的长度,则:∠GBA=∠AA′N=∠OGB=α,AA′=2ABsin∠ABG=2×4×sinα=,A′N=A′Acosα=×=,即:AM+MN的最小值为.8.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A. B. C. D.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH⊥BP于点H,取AC中点O,连接OG,过点O作OQ⊥BP于点Q,∵∠ACB=90°,∠ABC=30°,AB=4,∴AC=CP=2,BP=AB=4∴△ABP是等边三角形,∴∠FBH=30°∴Rt△FHB中,FH=FB∴当G、F、H在同一直线上时,GF+FB=GF+FH=GH取得最小值∵AE⊥CD于点G,∴∠AGC=90°∵O为AC中点,∴OA=OC=OG=AC∴A、C、G三点共圆,圆心为O,即点G在⊙O上运动∴当点G运动到OQ上时,GH取得最小值∵Rt△OPQ中,∠P=60°,OP=3,sin∠P=∴OQ=OP=,∴GH最小值为故选:C.9.抛物线与x轴交于点A,B(点A在点B的左边),与y轴交于点C.点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标.【分析】根据抛物线解析式得A、B、C,直线AC的解析式为:,可知AC与x轴夹角为30°.根据题意考虑,P在何处时,PE+取到最大值.过点E作EH⊥y轴交y轴于H点,则∠CEH=30°,故CH=,问题转化为PE+CH何时取到最小值.考虑到PE于CH并无公共端点,故用代数法计算,设,则,,,,∴当PE+EC的值最大时,x=﹣2,此时P(﹣2,),∴PC=2,∵O1B1=OB=,∴要使四边形PO1B1C周长的最小,即PO1+B1C的值最小,如图2,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,再作点P1关于x轴的对称点P2(﹣,﹣),则P1B1=P2B1,∴PO1+B1C=P2B1+B1C,∴连接P2C与x轴的交点即为使PO1+B1C的值最小时的点B1,∴B1(﹣,0),将B1向左平移个单位长度即得点O1,此时PO1+B1C=P2C==,对应的点O1的坐标为(﹣,0),∴四边形PO1B1C周长的最小值为+3.名师点睛拨开云雾开门见山在前面的最值问题中往往都是求某个线段最值或者形如PA+PB最值,除此之外我们还可能会遇上形如“PA+kP”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?【模型建立】如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小.【问题分析】,记,即求BC+kAC的最小值.【问题解决】构造射线AD使得sin∠DAN=k,即,CH=kAC.将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【模型总结】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.典题探究启迪思维探究重点例题1.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是_______.变式练习>>>1.如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则的最小值等于________.例题2.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A. B. C. D.变式练习>>>2.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=.例题3.等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边在x轴上,BC边的高OA在Y轴上.一只电子虫从A出发,先沿y轴到达G点,再沿GC到达C点,已知电子虫在Y轴上运动的速度是在GC上运动速度的2倍,若电子虫走完全程的时间最短,则点G的坐标为.变式练习>>>3.如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为()A.(0,) B.(0,) C.(0,) D.(0,)例题4.直线y=与抛物线y=(x﹣3)2﹣4m+3交于A,B两点(其中点A在点B的左侧),与抛物线的对称轴交于点C,抛物线的顶点为D(点D在点C的下方),设点B的横坐标为t(1)求点C的坐标及线段CD的长(用含m的式子表示);(2)直接用含t的式子表示m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论