高考化学知识点总结大全_第1页
高考化学知识点总结大全_第2页
高考化学知识点总结大全_第3页
高考化学知识点总结大全_第4页
高考化学知识点总结大全_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中化学总复习高考化学第一轮复习化学反应及能量变化实质:有电子转移(得失与偏移)特征:反应前后元素的化合价有变化还原性化合价升高弱氧化性概念及转化关系变化↑↑概念及转化关系变化→产物反应物→还原剂氧化反应氧化产物→产物反应物→变化氧化剂还原反应还原产物变化↓↓氧化性化合价降低弱还原性氧化还原反应:有元素化合价升降的化学反应是氧化还原反应。有电子转移(得失或偏移)的反应都是氧化还原反应。概念:氧化剂:反应中得到电子(或电子对偏向)的物质(反应中所含元素化合价降低物)还原剂:反应中失去电子(或电子对偏离)的物质(反应中所含元素化合价升高物)氧化产物:还原剂被氧化所得生成物;还原产物:氧化剂被还原所得生成物。氧化还原反应失电子,化合价升高,被氧化氧化还原反应双线桥:氧化剂+还原剂=还原产物+氧化产物得电子,化合价降低,被还原电子转移表示方法单线桥:电子还原剂+氧化剂=还原产物+氧化产物二者的主表示意义、箭号起止要区别:电子数目等依据原则:氧化剂化合价降低总数=还原剂化合价升高总数配平找出价态变化,看两剂分子式,确定升降总数;配平方法步骤:求最小公倍数,得出两剂系数,观察配平其它。有关计算:关键是依据氧化剂得电子数与还原剂失电子数相等,列出守恒关系式求解。强弱比较①、由元素的金属性或非金属性比较;(金属活动性顺序表,元素周期律)强弱比较②、由反应条件的难易比较;③、由氧化还原反应方向比较;(氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物)④、根据(氧化剂、还原剂)元素的价态与氧化还原性关系比较。氧化剂、还原剂元素处于最高价只有氧化性,最低价只有还原性,处于中间价态既有氧化又有还原性。氧化剂、还原剂①、活泼的非金属,如Cl2、Br2、O2等;②、元素(如Mn等)处于高化合价的氧化物,如MnO2、KMnO4等氧化剂:③、元素(如S、N等)处于高化合价时的含氧酸,如浓H2SO4、HNO3等④、元素(如Mn、Cl、Fe等)处于高化合价时的盐,如KMnO4、KClO3、FeCl3、K2Cr2O7⑤、过氧化物,如Na2O2、H2O2等。①、活泼的金属,如Na、Al、Zn、Fe等;②、元素(如C、S等)处于低化合价的氧化物,如CO、SO2等还原剂:③、元素(如Cl、S等)处于低化合价时的酸,如浓HCl、H2S等④、元素(如S、Fe等)处于低化合价时的盐,如Na2SO3、FeSO4等⑤、某些非金属单质,如H2、C、Si等。概念:在溶液中(或熔化状态下)有离子参加或生成的反应。离子互换反应离子非氧化还原反应碱性氧化物与酸的反应类型:酸性氧化物与碱的反应离子型氧化还原反应置换反应一般离子氧化还原反应化学方程式:用参加反应的有关物质的化学式表示化学反应的式子。用实际参加反应的离子符号表示化学反应的式子。表示方法写:写出反应的化学方程式;离子反应:拆:把易溶于水、易电离的物质拆写成离子形式;离子方程式:书写方法:删:将不参加反应的离子从方程式两端删去;查:检查方程式两端各元素原子种类、个数、电荷数是否相等。意义:不仅表示一定物质间的某个反应;还能表示同一类型的反应。本质:反应物的某些离子浓度的减小。金属、非金属、氧化物(Al2O3、SiO2)中学常见的难溶物碱:Mg(OH)2、Al(OH)3、Cu(OH)2、Fe(OH)3生成难溶的物质:Cu2++OH-=Cu(OH)2↓盐:AgCl、AgBr、AgI、CaCO3、BaCO3生成微溶物的离子反应:2Ag++SO42-=Ag2SO4↓发生条件由微溶物生成难溶物:Ca(OH)2+CO32-=CaCO3↓+2OH-生成难电离的物质:常见的难电离的物质有H2O、CH3COOH、H2CO3、NH3·H2O生成挥发性的物质:常见易挥发性物质有CO2、SO2、NH3等发生氧化还原反应:遵循氧化还原反应发生的条件。定义:在化学反应过程中放出或吸收的热量;符号:△H单位:一般采用KJ·mol-1测量:可用量热计测量研究对象:一定压强下在敞开容器中发生的反应所放出或吸收的热量。反应热:表示方法:放热反应△H<0,用“-”表示;吸热反应△H>0,用“+”表示。燃烧热:在101KPa下,1mol物质完全燃烧生成稳定氧化物时所放出的热量。定义:在稀溶液中,酸跟碱发生反应生成1molH2O时的反应热。中和热:强酸和强碱反应的中和热:H+(aq)+OH-(aq)=H2O(l);△H=-57.3KJ·mol-弱酸弱碱电离要消耗能量,中和热|△H|<57.3KJ·mol-1原理:断键吸热,成键放热。化学反应的能量变化反应热的微观解释:反应热=生成物分子形成时释放的总能量-反应物分子断裂时所吸收的总能量化学反应的能量变化定义:表明所放出或吸收热量的化学方程式。意义:既表明化学反应中的物质变化,也表明了化学反应中的能量变化。热化学①、要注明反应的温度和压强,若反应是在298K,1atm可不注明;方程式②、要注明反应物和生成物的聚集状态或晶型;书写方法③、△H与方程式计量数有关,注意方程式与△H对应,△H以KJ·mol-1单位,化学计量数可以是整数或分数。④、在所写化学反应方程式后写下△H的“+”或“-”数值和单位,方程式与△H之间用“;”分开。盖斯定律:一定条件下,某化学反应无论是一步完成还是分几步完成,反应的总热效应相同。按物质类别和种数分类化合反应A+B=AB按物质类别和种数分类分解反应AB=A+B置换反应A+BC=C+AB按化合价有无变化分类和种数分类按化合价有无变化分类和种数分类氧化还原反应概念、特征、本质、分析表示方法、应用按实际反应的微粒分类和种数分类化学反应:非氧化还原反应按实际反应的微粒分类和种数分类离子反应本质、特点、分类、发生的条件按反应中的能量变化分分子反应反应热与物质能量的关系按反应中的能量变化分放热反应热化学反应方程式吸热反应燃烧热中和热物质的量①、定义:表示含有一定数目粒子的集体。②、符号:n物质的量③、单位:摩尔、摩、符号mol④、1mol任何粒子(分、原、离、电、质、中子)数与0.012kg12C中所含碳原子数相同。⑤、、架起微观粒子与宏观物质之间联系的桥梁。①、定义:1mol任何粒子的粒子数叫阿伏加德罗常数。阿伏加德罗常数:②、符号NA③、近似值:6.02×1023①、定义:单位物质的量气体所占的体积叫~基本概念气体摩尔体积:②、符号:Vm③、单位:L·mol-1①、定义:单位物质的量物质所具有的质量叫~摩尔质量:②、符号:M③、单位:g·mol-1或kg·mol-1④、若以g·mol-1为单位,数值上与该物质相对原子质量或相对分子质量相等。物质的量①、定义:单位体积溶液中所含溶质B的物质的量来表示溶液组成的物理量叫溶质B的物质的量浓度。物质的量物质的量浓度:②、符号:c(B)③、单位:mol·L-1①、定律:在相同温度和压强下,相同体积的作何气体都含有相同数目的分子。同温同压下:阿伏加德罗定律及其推论:②阿伏加德罗定律及其推论:同温同体积下:Ⅰ、气体休的密度和相对密度:标况下:③、运用:A气体对B气体的相对密度:③、运用:Ⅱ、摩尔质量M(或平均摩尔质量)M=22.4L·mol-1×ρ,=M(A)ф(A)+M(B)ф(B)+···ф为体积分数。①、以物质的量为中心的有关物理量的换算关系:物质所含粒子数N÷÷化合价÷÷化合价×NA÷NA××M÷M×化合价物质的量n电解质电离出离子的“物质的量”物质的质量(m)÷M×化合价物质的量n÷96500C÷96500C·mol-1×Vm(22.4L/mol)×96500C·mol-1÷Vm(22.4L/mol)×96500C·mol-1÷Vm(22.4L/mol)×V×Vm×△H÷Vm÷△HV气体体积(非标准状况)÷Vm÷△H×V(溶液)×V(溶液)÷V(溶液)溶液的物质的量浓度CA)物质的量的相关计算关系及其它物质的量的相关计算关系及其它②、物质的量与其它量之间的换算恒等式:③、理想气体状态方程(克拉伯龙方程):PV=nRT或(R=8.314J/mol·K)④决定于、影响物质体积大小的因素:决定于微粒的大小1mol固、液体的体积决定于决定于物质体积微粒的个数1mol物质的体积决定于决定于微粒之间距离1mol气体的体积①、溶液稀释定律:溶质的量不变,m(浓)·w(浓)=m(稀)·w(稀);c(浓)·V(浓)=c(稀)·V(稀)⑤、溶液浓度换算式:②、溶解度与溶质质量分数w换算式:⑤、溶液浓度换算式:③、溶解度与物质的量浓度的换算:④、质量分数与物质的量浓度的换算:⑥、一定物质的量浓度主要仪器:量筒、托盘天平(砝码)、烧杯、玻璃棒、胶头滴管、容量瓶溶液的配配制:方法步骤:计算→称量→溶解→转移→洗涤→振荡→定容→摇匀→装瓶识差分析:关键看溶质或溶液体积的量的变化。依据来判断。物质结构元素周期律决定原子种类中子N(不带电荷)同位素(核素)决定原子种类原子核→质量数(A=N+Z)近似相对原子质量质子Z(带正电荷)→核电荷数元素→元素符号原子结构:最外层电子数决定主族元素的决定原子呈电中性电子数(Z个):化学性质及最高正价和族序数体积小,运动速率高(近光速),无固定轨道核外电子运动特征决定电子云(比喻)小黑点的意义、小黑点密度的意义。决定排布规律→电子层数周期序数及原子半径表示方法→原子(离子)的电子式、原子结构示意图随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化:①、原子最外层电子数呈周期性变化元素周期律②、原子半径呈周期性变化③、元素主要化合价呈周期性变化④、元素的金属性与非金属性呈周期性变化具体表现形式①、按原子序数递增的顺序从左到右排列;具体表现形式编排依据元素周期律和排列原则②、将电子层数相同的元素排成一个横行;编排依据元素周期表③、把最外层电子数相同的元素(个别除外)排成一个纵行。①、短周期(一、二、三周期)七主七副零和八三长三短一不全周期(7个横行)②、长周期(四、五、六周期)七主七副零和八三长三短一不全周期表结构③、不完全周期(第七周期)①、主族(ⅠA~ⅦA共7个)元素周期表族(18个纵行)②、副族(ⅠB~ⅦB共7个)③、Ⅷ族(8、9、10纵行)④、零族(稀有气体)同周期同主族元素性质的递变规律①、核电荷数,电子层结构,最外层电子数②、原子半径性质递变③、主要化合价④、金属性与非金属性⑤、气态氢化物的稳定性⑥、最高价氧化物的水化物酸碱性电子层数:相同条件下,电子层越多,半径越大。判断的依据核电荷数相同条件下,核电荷数越多,半径越小。最外层电子数相同条件下,最外层电子数越多,半径越大。微粒半径的比较1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外)如:Na>Mg>Al>Si>P>S>Cl.2、同主族元素的原子半径随核电荷数的增大而增大。如:Li<Na<K<Rb<Cs具体规律:3、同主族元素的离子半径随核电荷数的增大而增大。如:F--<Cl--<Br--<I--4、电子层结构相同的离子半径随核电荷数的增大而减小。如:F->Na+>Mg2+>Al3+5、同一元素不同价态的微粒半径,价态越高离子半径越小。如Fe>Fe2+>Fe3+①与水反应置换氢的难易②最高价氧化物的水化物碱性强弱金属性强弱③单质的还原性或离子的氧化性(电解中在阴极上得电子的先后)④互相置换反应依据:⑤原电池反应中正负极①与H2化合的难易及氢化物的稳定性元素的非金属性强弱②最高价氧化物的水化物酸性强弱金属性或非金属③单质的氧化性或离子的还原性性强弱的判断④互相置换反应①、同周期元素的金属性,随荷电荷数的增加而减小,如:Na>Mg>Al;非金属性,随荷电荷数的增加而增大,如:Si<P<S<Cl。规律:②、同主族元素的金属性,随荷电荷数的增加而增大,如:Li<Na<K<Rb<Cs;非金属性,随荷电荷数的增加而减小,如:F>Cl>Br>I。③、金属活动性顺序表:K>Ca>Mg>Al>Zn>Fe>Sn>Pb>(H)>Cu>Hg>Ag>Pt>Au定义:以12C原子质量的1/12(约1.66×10-27kg)作为标准,其它原子的质量跟它比较所得的值。其国际单位制(SI)单位为一,符号为1(单位1一般不写)原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。如:一个Cl2分子的m(Cl2)=2.657×10-26kg。核素的相对原子质量:各核素的质量与12C的质量的1/12的比值。一种元素有几种同位素,就应有几种不同的核素的相对原子质量,相对原子质量诸量比较:如35Cl为34.969,37Cl为36.966。(原子量)核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该核素的质量数相等。如:35Cl为35,37Cl为37。元素的相对原子质量:是按该元素各种天然同位素原子所占的原子百分比算出的平均值。如:Ar(Cl)=Ar(35Cl)×a%+Ar(37Cl)×b%元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与其丰度的乘积之和。注意:①、核素相对原子质量不是元素的相对原子质量。②、通常可以用元素近似相对原子质量代替元素相对原子质量进行必要的计算。定义:核电荷数相同,中子数不同的核素,互称为同位素。(即:同种元素的不同原子或核素)同位素①、结构上,质子数相同而中子数不同;特点:②、性质上,化学性质几乎完全相同,只是某些物理性质略有不同;③、存在上,在天然存在的某种元素里,不论是游离态还是化合态,同位素的原子(个数不是质量)百分含量一般是不变的(即丰度一定)。1、定义:相邻的两个或多个原子之间强烈的相互作用。离子键①、定义:阴阳离子间通过静电作用所形成的化学键离子键②、存在:离子化合物(NaCl、NaOH、Na2O2等);离子晶体。①、定义:原子间通过共用电子对所形成的化学键。不同原子间②、存在:共价化合物,非金属单质、离子化合物中(如:NaOH、Na2O2);不同原子间共价键分子、原子、离子晶体。分子的极性共用电子对是否偏移存在2、分类极性键共价化合物分子的极性共用电子对是否偏移存在化学键非极性键非金属单质相同原子间③、分类:相同原子间(孤对电子)(孤对电子)共用电子对的来源单方提供:配位键如:NH4+、H3O+共用电子对的来源金属键:金属阳离子与自由电子之间的相互作用。存在于金属单质、金属晶体中。决定分子的极性分子的空间构型决定分子的稳定性键能决定分子的极性分子的空间构型决定分子的稳定性3、键参数键长键角4、表示方式:电子式、结构式、结构简式(后两者适用于共价键)定义:把分子聚集在一起的作用力分子间作用力(范德瓦尔斯力):影响因素:大小与相对分子质量有关。作用:对物质的熔点、沸点等有影响。①、定义:分子之间的一种比较强的相互作用。分子间相互作用②、形成条件:第二周期的吸引电子能力强的N、O、F与H之间(NH3、H2O)③、对物质性质的影响:使物质熔沸点升高。④、氢键的形成及表示方式:F-—H···F-—H···F-—H···←代表氢键。氢键OOHHHHOHH⑤、说明:氢键是一种分子间静电作用;它比化学键弱得多,但比分子间作用力稍强;是一种较强的分子间作用力。定义:从整个分子看,分子里电荷分布是对称的(正负电荷中心能重合)的分子。非极性分子双原子分子:只含非极性键的双原子分子如:O2、H2、Cl2等。举例:只含非极性键的多原子分子如:O3、P4等分子极性多原子分子:含极性键的多原子分子若几何结构对称则为非极性分子如:CO2、CS2(直线型)、CH4、CCl4(正四面体型)极性分子:定义:从整个分子看,分子里电荷分布是不对称的(正负电荷中心不能重合)的。举例双原子分子:含极性键的双原子分子如:HCl、NO、CO等多原子分子:含极性键的多原子分子若几何结构不对称则为极性分子如:NH3(三角锥型)、H2O(折线型或V型)、H2O2非晶体离子晶体①构成晶体粒子种类①构成晶体粒子种类②粒子之间的相互作用晶体:原子晶体金属晶体①构成微粒:离子②微粒之间的相互作用:离子键③举例:CaF2、KNO3、CsCl、NaCl、Na2O等NaCl型晶体:每个Na+同时吸引6个Cl-离子,每个Cl-同结构特点时吸引6个Na+;Na+与Cl-以离子键结合,个数比为1:1。④微粒空间排列特点:CsCl型晶体:每个Cs+同时吸引8个Cl-离子,每个Cl-同时吸引8个Cs+;Cs+与Cl-以离子键结合,个数比为1:1。离子晶体:⑤说明:离子晶体中不存在单个分子,化学式表示离子个数比的式子。①、硬度大,难于压缩,具有较高熔点和沸点;性质特点②、离子晶体固态时一般不导电,但在受热熔化或溶于水时可以导电;③、溶解性:(参见溶解性表)晶体晶胞中微粒个数的计算:顶点,占1/8;棱上,占1/4;面心,占1/2;体心,占1①、构成微粒:分子结构特点②、微粒之间的相互作用:分子间作用力③、空间排列:(CO2如右图)分子晶体:④、举例:SO2、S、CO2、Cl2等①、硬度小,熔点和沸点低,分子间作用力越大,熔沸点越高;性质特点②、固态及熔化状态时均不导电;③、溶解性:遵守“相似相溶原理”:即非极性物质一般易溶于非极性分子溶剂,极性分子易溶于极性分子溶剂。①构成微粒:原子②微粒之间的相互作用:共价键③举例:SiC、Si、SiO2、C(金刚石)等Ⅰ、金刚石:(最小的环为非平面6元环)结构特点每个C被相邻4个碳包围,处于4个C原子的中心④微粒空间排列特点:原子晶体:Ⅱ、SiO2相当于金刚石晶体中C换成Si,Si与Si间间插O⑤说明:原子晶体中不存在单个分子,化学式表示原子个数比的式子。①、硬度大,难于压缩,具有较高熔点和沸点;性质特点②、一般不导电;③、溶解性:难溶于一般的溶剂。①、构成微粒:金属阳离子,自由电子;结构特点②、微粒之间的相互作用:金属键③、空间排列:金属晶体:④、举例:Cu、Au、Na等①、良好的导电性;性质特点②、良好的导热性;③、良好的延展性和具有金属光泽。①、层状结构结构:②、层内C——C之间为共价键;层与层之间为分子间作用力;过渡型晶体(石墨):③、空间排列:(如图)性质:熔沸点高;容易滑动;硬度小;能导电。化学反应速率、化学平衡意义:表示化学反应进行快慢的量。定性:根据反应物消耗,生成物产生的快慢(用气体、沉淀等可见现象)来粗略比较定量:用单位时间内反应物浓度的减少或生成物浓度的增大来表示。表示方法:①、单位:mol/(L·min)或mol/(L·s)说明:化学反应速率②、同一反应,速率用不同物质浓度变化表示时,数值可能不同,但数值之比等于方程式中各物质的化学计量数比。如:说明:化学反应速率③、一般不能用固体和纯液体物质表示浓度(因为ρ不变)④、对于没有达到化学平衡状态的可逆反应:v正≠v逆内因(主要因素):参加反应物质的性质。①、结论:在其它条件不变时,增大浓度,反应速率加快,反之浓度:则慢。②、说明:只对气体参加的反应或溶液中发生的反应速率产生影响;与反应物总量无关。影响因素①、结论:对于有气体参加的反应,增大压强,反应速率加快,压强:反之则慢②、说明:当改变容器内压强而有关反应的气体浓度无变化时,则反应速率不变;如:向密闭容器中通入惰性气体。①、结论:其它条件不变时,升高温度反应速率加快,反之则慢。温度:a、对任何反应都产生影响,无论是放热还是吸热反应;外因:②、说明b、对于可逆反应能同时改变正逆反应速率但程度不同;c、一般温度每升高10℃,反应速率增大2~4倍,有些反应只有在一定温度范围内升温才能加快。①、结论:使用催化剂能改变化学反应速率。催化剂a、具有选择性;②、说明:b、对于可逆反应,使用催化剂可同等程度地改变正、逆反应速率;c、使用正催化剂,反应速率加快,使用负催化剂,反应速率减慢。原因:碰撞理论(有效碰撞、碰撞的取向及活化分子等)其它因素:光、电磁波、超声波、反应物颗粒的大小、溶剂的性质等。学平衡状态:指在一定条件下的可逆反应里,正反应速率和逆反应速率相等,反应混合中各组分的百分含量保持不变的状态。逆:研究的对象是可逆反应动:是指动态平衡,反应达到平衡状态时,反应没有停止。平衡状态特征:等:平衡时正反应速率等于逆反应速率,但不等于零。定:反应混合物中各组分的百分含量保持一个定值。变:外界条件改变,原平衡破坏,建立新的平衡。①、定义:mA(g)+nB(g)pC(g)+qD(g)②、意义:表示可逆反应的反应进行的程度。③、影响因素:温度(正反应吸热时,温度升高,K增大;正反应放热时,化学平衡常数:温度升高,K减小),而与反应物或生成物浓度无关。用化学平衡常数判断化学平衡状态。④、用途:a、Q=K时,处于平衡状态,v正=v逆;b、Q>K时,处于未达平衡状态;v正<v逆向逆向进行;c、Q<K时,处于未达平衡状态;v正>v逆向正向进行。原因:反应条件改变引起:v正≠v逆化学平衡:结果:速率、各组分百分含量与原平衡比较均发生变化。化学平衡移动:v(正)>v(逆)向右(正向)移方向:v(正)=v(逆)平衡不移动v(正)<v(逆)向左(逆向)移注意:其它条件不变,只改变影响平衡的一个条件才能使用。①、浓度:增大反应物浓度或减少生成物浓度,平衡向正反应方向移动;反之向逆反应方向移动结论:增大压强,平衡向缩小体积方向移动;减小压强,平衡向扩大体积的方向移动。②、压强:Ⅰ、反应前后气态物质总体积没有变化的反影响化学平衡移动的因素:应,压强改变不能改变化学平衡状态;说明:Ⅱ、压强的改变对浓度无影响时,不能改变化学平衡状态,如向密闭容器中充入惰性气体。Ⅲ、对没有气体参加的反应无影响。③、温度:升高温度,平衡向吸热反应方向移动;降低温度,平衡向放热反应方向移动。勒沙特列原理:如果改变影响平衡的一个条件(如浓度、压强、温度等)平衡就向能减弱这种改变的方向移动。概念:在一定条件下(定温、定容或定温、定压),对同一可逆反应,只要起始时加入物质的物质的量不同,而达到化学平衡时,同种物质的含量相同,这样的平衡称为等效平衡。等效平衡:(1)、定温、定容:①对于一般的可逆反应只改变起始时加入物质的物质的量,如通过可逆反应的化学计量数比换算成同一半边的物质的物质的量与原平衡相同,则两平衡等效。②对于反应前后气体分子数不变的可逆反应,只要反应物(或生成物)的物质的量的比例与原平衡相同,两平衡等效。(2)定温、定压:改变起始时加入物质的物质的量,只要按化学计量数换算成同一半边的物质的物质的量之比与原平衡相同,则达平衡后与原平衡等效。电解质溶液非电解质:无论在水溶液或熔融状态都不导电的化合物定义:凡是在水溶液或熔融状态能够导电的化合物化合物强碱强电解质→水溶液中全部电离的电解质大多数盐离子化合物金属氧化物电解质:分类强酸→强极性化合物弱酸电解质和弱电解质→水溶液中部分电离的电解质弱碱弱极性化合物电解质溶液溶于水水溶于水①、(强)一步电离与(弱)分步电离表示:电离方程式②、(强)完全电离与(弱)可逆电离③、质量守恒与电荷守恒电解质溶液混合物←电解质溶液电解质溶液混合物←电解质溶液导电能力:相同条件下,离子浓度越大,则导电能力越强。意义:一定条件下,弱电解质离子化速率与分子化速率相等时,则建立平衡。动:动态平衡,v(电离)=v(结合)≠0弱电解质的特征:定:条件一定,分子、离子浓度一定电离平衡变:条件改变,平衡被破坏,发生移动如:H2CO3H2CO3HCO3-+H+表示:电离方程式,可逆符号,多元弱酸分步书写;HCO3-CO32-+H+影响因素:温度越高,电离程度越大;而多元弱碱不需分步写,如:Cu(OH)2浓度越小,电离程度越大。Cu(OH)2Cu2++2OH-水是极弱电解质:H2OH++OH-①、c(H+)=c(OH-)=1×10-7mol-1纯水常温下数据:②、Kw=c(H+)·c(OH-)=1×10-14③、pH=-lgc(H+)=7水的电离:c(H+)>c(OH-)酸性PH<7水溶液的酸碱性:c(H+)=c(OH-)中性PH=7c(H+)<c(OH-)碱性PH>7抑制电离:加入酸或碱影响水电离的因素加入活泼金属,如Na、K等;促进电离:加入易水解的盐,如NaAc、NH4Cl等;升高温度。表示方法:pH=—lg(H+)适用范围:浓度小于1mol·L-的稀酸或稀碱溶液。pH试纸:用干净的玻璃棒分别蘸取少量的待测溶液点在试纸上,观察试纸颜色变化并跟比色卡比较,确定该溶液的PH值。石蕊:(红)5.0(紫)8.0(蓝)测定方法:酸碱指示剂酚酞:(无)8.2(粉红)10.0(红)及其变色范围甲基橙:(红)3.1(橙)4.4(黄)甲基红:(红)4.4(橙)6.2(黄)cccc(H+)cpHCc(OH-)cpOHpH+pOH=pKwC(H+)·c(OH-)=KwpH=-lgc(H+)c(H+)=10-pHpOH=-lgc(OH-)c(OH-)=10-pOH溶液的pH换算关系:两强酸混合:混合:两强碱混合:c(OH-)混=c(H+)混=Kw/c(OH-)混→pH强酸强碱混合:强酸HnAc(H+)=n·c(HnA)pH值单一:计算:强碱B(OH)nc(OH-)=n·c{B(OH-)npH值单一:计算:弱酸HnAc(H+)=c(HnA)·α(HnA)弱碱B(OH)nc(OH-)=c{B(OH-)n}·α{B(OH-)n}混合前混合后条件两强等体积pH1+pH2≥15pH1-0.3pH1>pH2速算规律:混合(近似)pH1+pH2=14pH=7速算规律:pH1+pH2≤13pH2+0.3pH1>pH2pH之和为14的一强一弱等体积相混结果:谁强显谁的性质。实质:盐中弱(弱酸根或弱碱阳离子)离子与水电离出的H+或OH-结合生成难电离的分子或离子,破坏水的电离平衡。条件:①、盐中必有弱离子②、盐必须能溶于水①、谁弱谁水解、谁强显谁性;都弱均水解、不弱不水解。规律:②、弱的程度越大,水解的能力越强。③、盐的浓度越小,水解程度越大。④、温度越高,水解程度越大。特征:①、属可逆反应,其逆反应为酸碱中和(符合化学平衡规律);特征:②、水解程度一般微弱,且吸热。内因:盐类本身的性质相同条件下,同浓度的Na2CO3>NaHCO3(碱性)影响因素:Na2CO3>NaAc(碱性)①、温度的影响:升高温度,水解程度变大;外因②、浓度的影响:稀释可促进盐类的水解,浓度越低水解程度越大;③、pH的影响:NH4++H2ONH3·H2O+H+加酸抑制,加碱促进。NaAcAc-+H2OHAc+OH-强碱弱酸盐:Na2SO3(分步)SO32-+H2OHSO3-+OH-单水解:HSO3-+H2OH2SO3+OH-盐类的水解强酸弱碱盐:NH4ClNH4Cl+H2OHCl+NH3·H2OAlCl3(应分步但简为一步)Al3++3H2OAl(OH)3+3H+分类①、常见易双水解的离子组合:Al3+与CO32-、HCO3-、S2-、HS-、AlO2-Fe3+与CO32-、HCO3-、AlO2-、(S2-、HS-主要发生氧化还原)双水解:NH4+与AlO2-、SO32-能进行到底不用可逆号,用等号,沉淀、气体一般要标出:表示:如:2Al3++2CO32-+3H2O=2Al(OH)3↓+3CO2↑②、表示:Al3++3AlO2-+6H2O=4Al(OH)3↓一般不用“=”,用“”的如:NH4++Ac-+H2ONH3·H2O+HAcNH4++CO32-+H2ONH3·H2O+HCO3-①、首先指出弱酸阴离子或弱碱阳离子,再决定如何水解;说明:②、某种盐溶液只有一种离子水解,水解程度小,一般用可逆号,不用↑或↓;③、多无弱酸阴离子分步水解,多元弱碱阳离子只看作一步水解。正盐:弱酸强碱盐(碱性)、弱碱强酸盐(酸性)、弱酸弱碱盐(视相对强弱)盐溶液的强酸的酸式盐,不水解如NaHSO4显酸性;酸碱性:酸式盐弱酸的酸式盐,既水解又能电离,酸碱性视电离和水解的相对强弱应用:酸性:NaH2PO4、NaHSO3;碱性:NaHCO3、NaHS、Na2HPO4。判断弱电解质的相对强弱:碱性Na2CO3>NaAc→酸性HAc>H2CO3酸性NH4Cl<AlCl3→碱性NH3·H2O>Al(OH)3解释在生活中的应用:①、明矾净水②、纯碱去污③、泡沫灭火器④、FeCl3溶液配制。电荷守恒c(H+)+c(Na+)=2c(CO32-)+c(HCO3-)+c(OH-)正负电荷相等相等关系:物料守恒c(Na+)=2c(CO32-)+2c(HCO3-)+2c(H2CO3)C原子守恒(以Na2CO3)质子守恒c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3)H+离子守恒离子浓度比较:①多元弱酸H3PO4c(H+)>c(H2PO4-)>c(HPO42-)>c(PO43-)②多元弱酸形成的正盐Na2CO3c(Na+)>c(CO32-)>c(OH-)>c(HCO3-)>c(H+)大小关系:③不同溶液中同一离子浓度浓度0.1mol/L的①、NH4Cl②、CH3COONH4③、NH4HSO4则c(NH4+)③>①>②④混合溶液中各离子浓度0.1mol/LNH4Cl与0.1mol/LNH3混合则:c(NH4+)>c(Cl-)>c(OH-)>c(H+)①、用于精确地放出一定体积溶液的容器;②、内径均匀,带有刻度的细长玻璃管,下部有控制液体流量的玻璃活塞(或由橡皮管、概述:玻璃球组成的阀);③、规格有25ml、50ml,估读到0.01ml;④、分为酸式滴定管(不能盛碱液,HF以及Na2SiO3、Na2CO3等碱性溶液)碱式滴定管(不能盛放酸性和强氧化性溶液)滴定管:使用方法:①检漏→②润洗→③注液→④排气→⑤调零→⑥放液→⑦读数→⑧记录①、滴定管在装入酸或碱溶液后,要排净滴定管尖嘴内空气使尖嘴内充满液体而无气泡。方法:酸式滴定管碱式滴定管注意:②、调整刻度时,应使液面在“0”或“0”以下,但不能太往下以免液体不足。③、控制滴液速度,使得液体逐滴流出。④、读数时等液面稳定后,视线与凹液面相切的刻度水平,并估读到0.01ml的精确度。定义:用已制浓度的酸(或碱)来测定未知浓度的碱(或酸)的实验方法中和实质:H++OH-=H2O原理:酸碱中和反应的物质的量之比等于它们的化学计量数之比:关键:①准确测定参加反应的两种溶液的体积;②准确判断中和反应是否恰好完全。仪器:滴定管、锥形瓶、铁架台、滴定管夹、烧杯等。作用:通过指示剂颜色的变化来确定终点;中和滴定:指示剂:选择:变色要灵敏、明显(终点尽可能与变色范围一致)①、中和滴定,一般不用石蕊作指示剂,颜色变化不明显;说明:②、酸滴碱,一般选甲基橙终点由黄色→橙色;③、碱滴酸,一般选酚酞终点由无色→红色;准备:滴定管(锥形瓶)洗涤→滴定管查漏→滴定管的润洗→注液→排气→调零→读数→记录操作:移取待测液,加入指示剂2~3滴,然后滴定,判断终点,读数。滴定:左手操管、右手旋瓶、目视瓶中、滴滴入瓶、突变暂停、半分定终、重复两次、求均值。计算:取两次或多次消耗标准溶液体积平均值然后求c待①、滴定管的“0”刻度在上端,刻度值由上往下增大;②、读数时视线与凹液面相切;体积:③、滴定管测量液体,有两次读数(初、末)两数值之差为液体体积;④、中和滴定体积测量,有待测液和标准液两方面。原理:误差分析方法是分别判断C标、V标和V测的误差变化而对C测的影响。①、装标准液的滴定管在尖嘴内有气泡,滴定后气泡消失;②、装标准液的滴定管在水洗后没润洗,就装标准液;中和滴定偏③、锥形瓶用待测液润洗;误差分析高④、滴定后滴定管尖嘴处挂有液滴;⑤、滴定后仰视读数(前正常);举例⑥、滴定前俯视读数(后正常);①、用滴定管取待测液时,没有润洗就取待测液;偏②、滴定时待测液溅出;低③、滴定后俯视读数;④、滴定前仰视说明:由于指示剂的变色范围引起的误差,一般可忽略不计。电化学装置特点:化学能转化为电能。①、两个活泼性不同的电极;形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应);原③、形成闭合回路(或在溶液中接触)电负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。池基本概念:正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。原电极反应方程式:电极反应、总反应。失e-失e-,沿导线传递,有电流产生氧化反应负极铜锌原电池正极还原反应反应原理:移向阳离子溶解不断Zn-2e-=Zn2+2H++2e-=2H2↑移向阳离子溶解不断电解质溶液电极反应:负极(锌筒)Zn-2e-=Zn2+正极(石墨)2NH4++2e-=2NH3+H2↑①、普通锌——锰干电池总反应:Zn+2NH4+=Zn2++2NH3+H2↑干电池:电解质溶液:糊状的NH4Cl特点:电量小,放电过程易发生气涨和溶液②、碱性锌——锰干电池电极:负极由锌改锌粉(反应面积增大,放电电流增加);电解液:由中性变为碱性(离子导电性好)。正极(PbO2)PbO2+SO42-+4H++2e-=PbSO4+2H2O放电负极(Pb)Pb+SO42--2e-=PbSO4放电充电铅蓄电池:总反应:PbO2+Pb+2H2SO42PbSO4+2H2O充电电解液:1.25g/cm3~1.28g/cm3的H2SO4溶液化学电源简介蓄电池特点:电压稳定。化学电源简介放电放电`Ⅰ、镍——镉(Ni——Cd)可充电电池;放电放电`其它蓄电池Cd+2NiO(OH)+2H2OCd(OH)2+2Ni(OH)2Ⅱ、银锌蓄电池锂电池①、燃料电池与普通电池的区别不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时燃料电极反应产物不断排出电池。电池②、原料:除氢气和氧气外,也可以是CH4、煤气、燃料、空气、氯气等氧化剂。负极:2H2+2OH--4e-=4H2O;正极:O2+2H2O+4e-=4OH-③、氢氧燃料电池:总反应:O2+2H2=2H2O特点:转化率高,持续使用,无污染。废旧电池的危害:旧电池中含有重金属(Hg2+)酸碱等物质;回收金属,防止污染。腐蚀概念:金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程。概述:腐蚀危害:腐蚀的本质:M-ne-→Mn+(氧化反应)分类:化学腐蚀(金属与接触到的物质直接发生化学反应而引起的腐蚀)、电化腐蚀定义:因发生原电池反应,而使金属腐蚀的形式。金属的腐蚀与防护负极(Fe):Fe-2e-=Fe2+;正极(C):O2+2H2O+4e-=4OH-金属的腐蚀与防护电化吸氧腐蚀:总反应:2Fe+O2+2H2O=Fe(OH)2△腐蚀后继反应:4Fe(OH)2+O2+2H2O=4Fe(OH)3△钢铁的腐蚀:2Fe(OH)3Fe2O3+3H2O负极(Fe):Fe-2e-=Fe2+;析氢腐蚀:正极(C):2H++2e-=H2↑总反应:Fe+2H+=Fe2++H2↑影响腐蚀的因素:金属本性、介质。金属的防护:①、改变金属的内部组织结构;保护方法:②、在金属表面覆盖保护层;③、电化学保护法(牺牲阳极的阴极保护法)定义:使电流通过电解质溶液而在阴阳两极引起氧化还原反应的过程。装置特点:电能转化为化学能。①、与电源本连的两个电极;形成条件②、电解质溶液(或熔化的电解质)③、形成闭合回路。电解池原理电极阳极:与直流电源正极相连的叫阳极。电解池原理概念阴极:与直流电源负极相连的叫阴极。电极反应:原理:谁还原性或氧化性强谁先放电(发生氧化还原反应)离子放电顺序:阳极:阴离子还原性S2->I->Br->Cl->OH->SO42-(含氧酸根)>F-阴极:阳离子氧化性Ag+>Fe3+>Cu2+>Pb2+>Sn2+>Fe2+>Zn2+>H+>Al3+>Mg2+>Na+电子流向e-e-移向阳离子氧化反应阳极阴极还原反应移向阳离子移向阴离子反应原理:4OH--4e-=2H2O+O2Cu2++2e-移向阴离子电解质溶液电解电解结果:在两极上有新物质生成。电解总反应:2CuSO4+2H2O2Cu+2H2SO4+O2↑粗铜板作阳极,与直流电源正极相连;①、装置纯铜作阴极,与直流电源负极相连;用CuSO4(加一定量H2SO4)作电解液。阴极:Cu2++2e-=Cu电解精炼铜阳极:Cu-2e-=Cu2+、Zn-2e-=Zn2+②、原理:Ni-2e-=Ni2+阳极泥:含Ag、Au等贵重金属;电解液:溶液中CuSO4浓度基本不变③、电解铜的特点:纯度高、导电性好。①、概念:利用电解原理在某些金属的表面镀上一薄层其它金属或合金的过程。将待镀金属与电源负极相连作阴极;②、方法:镀层金属与电源正极相连作阳极;电镀:用含镀层金属离子的电解质溶液配成电镀液。电解的应用③、原理:阳极Cu-2e-=Cu2+;Cu2++2e-=Cu电解的应用④、装置:⑤、电镀工业:镀件预处理→电镀液添加剂→装置:(如图)现象①、阴极上有气泡;②、阳极有刺激性气体产,能使湿润的淀粉KI变蓝;电解食盐水③、阴极区附近溶液变红,有碱生成原理:通电前:NaCl=Na++Cl-H2OH++OH-原理阴极(Fe):Na+,H+移向阴极;2H++2e-=H2↑(还原反应)电解通电后:阳极(C):Cl-、OH-移向阳极;2Cl--2e-=Cl2↑(氧化反应)电解总反应:2NaCl+2H2O2NaOH+Cl2↑+H2↑氯碱工业阳极、阴极、离子交换膜、电解槽、导电铜棒等氯碱工业①、组成:阳极:金属钛网(涂有钌氧化物);阴极:碳钢网(涂有Ni涂层)阳离子交换膜:只允许阳离子通过,阻止阴离子和空气通过;②、装置:食盐湿氯气氯气离子交换膜③、生成流程:淡盐水氢气法制烧碱:NaOH溶液→NaOH固体精制食盐水+—纯水(含少量NaOH)粗盐水(含泥沙、Cu2+、Mg2+、Ba2+、SO42-等)阳离子交换树脂:除Cu2+、Mg2+等加BaCl2,Ba2++SO42-=BaSO4↓④、粗盐水精制:加Na2CO3:Ca2++CO32-=CaCO3↓;Ba2++CO32-=BaCO3↓加NaOH:Mg2++2OH-=Mg(OH)2↓;Fe3++3OH-=Fe(OH)3↓分散系——胶体<10-9m溶液液溶胶如:Fe(OH)3、AgI等胶体;分散质分散剂组成分散质微粒直径按分散剂固溶胶:烟水晶、有色玻璃等;分散质分散剂组成分散质微粒直径分散系10-9m~10-7m气溶胶如烟、云、雾等。(胶体)分子胶体:(高分子胶体)如蛋白质胶按分散质体、淀粉胶体;粒子胶体:如Fe(OH)3胶体,AgI胶体>10-7m浊液(悬浊液、乳浊液)①、微粒特征:直径在10-9m~10-7m,表面积大。②、鉴别胶体的方法:丁达尔现象③、净化和精制:渗析Fe(OH)3胶体:将1~2mlFeCl3饱和溶液滴入20ml沸水溶液显红褐色FeCl3+3H2O=Fe(OH)3(胶体)+3HClⅠ、将0.01mol·L-AgNO3溶液8~10逐滴滴加到10ml0.01mol/LKI④、胶体的制备:溶液中边滴加边用力振荡。AgI胶体:Ⅱ、AgNO3+KI=AgI(胶体)+KNO3Ⅲ、说明:滴加顺序不同AgI胶体带电不同,本法KI过量,AgI胶体吸附I-带负电反之带正电(Ag+)硅酸胶体:将1ml水玻璃加到5~10ml1mol/L盐酸中边滴加边振荡。Na2SiO3+2HCl=H2SiO3(胶体)+2NaCl胶体Ⅰ、丁达尔现象:定义:光束通过胶体,形成光亮的“通路”的现象。原因:胶粒对光的散射而形成的。Ⅱ、布朗运动ⅰ、在外电场作用下,胶体粒子在分散剂里向电极(阴或阴极)作定向移动现象。⑤、胶体的性质:Ⅲ、电泳:ⅱ、原因:表面积大,吸附强,胶粒带电。ⅲ、吸附规律:带正电:金属氢氧化物、金属氧化物的胶体;带负电:非金属氧化物、金属硫化物胶体。ⅳ、应用:除尘。原因:使胶体粒子从分散剂中析出的过程。Ⅳ、胶体的聚沉:方法:加入带相反电荷胶粒的胶体;加入电解质;加热等。①、土壤的保肥作用:土壤胶体一般带负电,可吸附带正电的肥料;⑥、应用②、制豆腐的化学原理;③、江河入海口处形成三角洲;④、明矾净水原理。意义:在一定温度下固体物质在液态溶剂里当溶解速率和结晶速率相等形成饱和溶溶解平衡:液的状态(动态平衡)表示Mg(OH)2(S)Mg2+(ag)+2OH-(ag)注意:溶解方程式与电离方程式的不同点。固体固体的溶解度=(溶剂)固体大多数固体溶解度随温度的升高而增大,如KNO3;影响因素温度:只有少数物质的溶解度影响很小,如NaCl;溶解度极少数物质的溶解度随温度升高而减小,如Ca(OH)2。概念:在1.01×105Pa和一定温度下,1体积水所溶解气体的体积;溶液气体表示方法:非标况下气体的体积换算成标况下的体积;影响因素:气体的溶解度随温度的升高而减小,随压强增大而增大。浓度溶质的质量分数=浓度物质的量浓度(mol·L-)=结晶方法:蒸发溶剂结晶;蒸发后冷却。其它结晶水合物:含有结晶水的化合物。其它风化:在室温下结晶水合物失去一部分或全部结晶水的现象。潮解:晶体在空气中吸收水蒸气,在其表面逐渐形成溶液的现象。第一部分化学基本概念和基本理论一.物质的组成、性质和分类:(一)掌握基本概念1.分子分子是能够独立存在并保持物质化学性质的一种微粒。(1)分子同原子、离子一样是构成物质的基本微粒.(2)按组成分子的原子个数可分为:单原子分子如:He、Ne、Ar、Kr…双原子分子如:O2、H2、HCl、NO…多原子分子如:H2O、P4、C6H12O6…2.原子原子是化学变化中的最小微粒。确切地说,在化学反应中原子核不变,只有核外电子发生变化。(1)原子是组成某些物质(如金刚石、晶体硅、二氧化硅等原子晶体)和分子的基本微粒。(2)原子是由原子核(中子、质子)和核外电子构成的。3.离子离子是指带电荷的原子或原子团。(1)离子可分为:阳离子:Li+、Na+、H+、NH4+…阴离子:Cl–、O2–、OH–、SO42–…(2)存在离子的物质:①离子化合物中:NaCl、CaCl2、Na2SO4…②电解质溶液中:盐酸、NaOH溶液…③金属晶体中:钠、铁、钾、铜…4.元素元素是具有相同核电荷数(即质子数)的同—类原子的总称。(1)元素与物质、分子、原子的区别与联系:物质是由元素组成的(宏观看);物质是由分子、原子或离子构成的(微观看)。(2)某些元素可以形成不同的单质(性质、结构不同)—同素异形体。(3)各种元素在地壳中的质量分数各不相同,占前五位的依次是:O、Si、Al、Fe、Ca。5.同位素是指同一元素不同核素之间互称同位素,即具有相同质子数,不同中子数的同一类原子互称同位素。如H有三种同位素:11H、21H、31H(氕、氘、氚)。6.核素核素是具有特定质量数、原子序数和核能态,而且其寿命足以被观察的一类原子。(1)同种元素、可以有若干种不同的核素—同位素。(2)同一种元素的各种核素尽管中子数不同,但它们的质子数和电子数相同。核外电子排布相同,因而它们的化学性质几乎是相同的。7.原子团原子团是指多个原子结合成的集体,在许多反应中,原子团作为一个集体参加反应。原子团有几下几种类型:根(如SO42-、OHˉ、CH3COOˉ等)、官能团(有机物分子中能反映物质特殊性质的原子团,如—OH、—NO2、—COOH等)、游离基(又称自由基、具有不成价电子的原子团,如甲基游离基·CH3)。8.基化合物中具有特殊性质的一部分原子或原子团,或化合物分子中去掉某些原子或原子团后剩下的原子团。(1)有机物的官能团是决定物质主要性质的基,如醇的羟基(—OH)和羧酸的羧基(—COOH)。(2)甲烷(CH4)分子去掉一个氢原子后剩余部分(·CH3)含有未成对的价电子,称甲基或甲基游离基,也包括单原子的游离基(·Cl)。基(羟基)根(氢氧根)电子式电性电中性带负电存在于不能独立存在,必须和其他“基”或原子团相结合能独立存在于溶液或离子化合物中9.物理性质与化学性质物理性质化学性质概念(宏观)物质不需要发生化学变化就能表现出来的性质物质在发生化学变化时表现出来的性质实质(微观)物质的分子组成和结构没有发生改变时呈现的性质物质的分子组成和结构发生改变时呈现的性质性质包括内容颜色、状态、气味、味道、密度、熔点、沸点、溶解性、导电性、导热性等一般指跟氢气、氧气、金属、非金属、氧化物、酸、碱、盐能否发生反应及热稳定性等10.物理变化和化学变化物理变化:没有生成其他物质的变化,仅是物质形态的变化。化学变化:变化时有其他物质生成,又叫化学反应。化学变化的特征:有新物质生成伴有放热、发光、变色等现象化学变化本质:旧键断裂、新键生成或转移电子等。二者的区别是:前者无新物质生成,仅是物质形态、状态的变化。11.溶解性指物质在某种溶剂中溶解的能力。例如氯化钠易溶于水,却难溶于无水乙醇、苯等有机溶剂。单质碘在水中溶解性较差,却易溶于乙醇、苯等有机溶剂。苯酚在室温时仅微溶于水,当温度大于70℃时,却能以任意比与水互溶(苯酚熔点为43℃,70℃时苯酚为液态)。利用物质在不同温度或不同溶剂中溶解性的差异,可以分离混合物或进行物质的提纯。在上述物质溶解过程中,溶质与溶剂的化学组成没有发生变化,利用简单的物理方法可以把溶质与溶剂分离开。还有一种完全不同意义的溶解。例如,石灰石溶于盐酸,铁溶于稀硫酸,氢氧化银溶于氨水等。这样的溶解中,物质的化学组成发生了变化,用简单的物理方法不能把溶解的物质提纯出来。12.液化指气态物质在降低温度或加大压强的条件下转变成液体的现象。在化学工业生产过程中,为了便于贮存、运输某些气体物质,常将气体物质液化。液化操作是在降温的同时加压,液化使用的设备及容器必须能耐高压,以确保安全。常用的几种气体液化后用途见下表。气体名称液化后名称主要用途空气液体空气分离空气制取氧气、氮气、稀有气体氮气液氮冷冻剂氯气液氯自来水消毒剂,制氯化铁、氯化烷等氨气液氨制冷剂,用于氨制冷机中二氧化硫液体二氧化硫漂白剂石油气液化石油气燃料13.金属性元素的金属性通常指元素的原子失去价电子的能力。元素的原子越易失去电子,该元素的金属性越强,它的单质越容易置换出水或酸中的氢成为氢气,它的最高价氧化物的水化物的碱性亦越强。元素的原子半径越大,价电子越少,越容易失去电子。在各种稳定的同位素中,铯元素的金属性最强,氢氧化铯的碱性也最强。除了金属元素表现出不同强弱的金属性,某些非金属元素也表现出一定的金属性,如硼、硅、砷、碲等。14.非金属性是指元素的原子在反应中得到(吸收)电子的能力。元素的原子在反应中越容易得到电子。元素的非金属性越强,该元素的单质越容易与H2化合,生成的氢化物越稳定,它的最高价氧化物的水化物(含氧酸)的酸性越强(氧元素、氟元素除外)。已知氟元素是最活泼的非金属元素。它与氢气在黑暗中就能发生剧烈的爆炸反应,氟化氢是最稳定的氢化物。氧元素的非金属性仅次于氟元素,除氟、氧元素外,氯元素的非金属性也很强,它的最高价氧化物(Cl2O7)的水化物—高氯酸(HClO4)是已知含氧酸中最强的一种酸。金属性强弱非金属性强弱最高价氧化物水化物碱性强弱最高价氧化物水化物酸性强弱与水或酸反应,置换出H2的易难与H2化合的易难及生成氢化物稳定性活泼金属能从盐溶液中置换出不活泼金属活泼非金属单质能置换出较不活泼非金属单质阳离子氧化性强的为不活泼金属,氧化性弱的为活泼金属阴离子还原性强的为非金属性弱,还原性弱的为非金属性强原电池中负极为活泼金属,正极为不活泼金属将金属氧化成高价的为非金属性强的单质,氧化成低价的为非金属性弱的单质电解时,在阴极先析出的为不活泼金属电解时,在阳极先产生的为非金属性弱的单质15.氧化性物质(单质或化合物)在化学反应中得到(吸引)电子的能力称为物质的氧化性。非金属单质、金属元素高价态的化合物、某些含氧酸及其盐一般有较强的氧化性。非金属单质的氧化性强弱与元素的非金属性十分相似,元素的非金属性越强,单质的氧化性也越强。氟是氧化性最强的非金属单质。氧化性规律有:①活泼金属阳离子的氧化性弱于不活泼金属阳离子的氧化性,如Na+<Ag+;②变价金属中,高价态的氧化性强于低价态的氧化性,如Fe3+>Fe2+,MnO4?>MnO42?>MnO2;③同种元素含氧酸的氧化性往往是价态越高,氧化性越强,如HNO3>HNO2,浓度越大,氧化性也越强,如浓HNO3>稀HNO3,浓H2SO4>稀H2SO4。然而,也有例外,如氯元素的含氧酸,它们的氧化性强弱顺序是HClO>HClO2>HClO3>HClO4。16.还原性物质在化学反应中失去电子的能力称为该物质的还原性。金属单质、大多数非金属单质和含有元素低价态的化合物都有较强的还原性。物质还原性的强弱取决于该物质在化学反应中失去电子能力的大小。元素的金属性越强,金属单质的还原性也越强,金属单质还原性顺序和金属活动性顺序基本一致。元素的非金属性越弱,非金属单质的还原性越强。元素若有多种价态的物质,一般说来,价态降低,还原性越强。如含硫元素不同价态的物质的还原性:H2S>S>SO2;含磷元素物质的还原性PH3>P4>PO33?;铁及其盐的还原性:Fe>Fe2+等。17.挥发性液态物质在低于沸点的温度条件下转变成气态的能力,以及一些气体溶质从溶液中逸出的能力。具有较强挥发性的物质大多是一些低沸点的液体物质,如乙醇、乙醚、丙酮、氯仿、二硫化碳等。另外氨水、浓盐酸、浓硝酸等都具有很强的挥发性。这些物质贮存时,应密闭保存并远离热源,防止受热加快挥发。18.升华在加热的条件下,固态物质不经过液态直接变为气态的变化。常见能升华的物质有I2、干冰(固态CO2)、升华硫、红磷、灰砷等。19.稳定性是物质的化学性质的一种。它反映出物质在一定条件下发生化学反应的难易程度。稳定性可分为热稳定性、光化学稳定性和氧化还原稳定性。越不活泼的物质,其化学稳定性越好。例如:苯在一般情况下,化学性质比较稳定,所以,常用苯作萃取剂和有机反应的介质。很多反应在水溶液中进行和水作溶剂,都是利用了水的化学稳定性。20.混合物由两种或多种物质混合而成的物质叫混合物;(1)混合物没有固定的组成,一般没有固定的熔沸点;(2)常见特殊名称的混合物:氨水、氯水、王水、天然水、硬水、软水、盐酸、浓硫酸、福尔马林、水玻璃;爆鸣气、水煤气、天然气、焦炉气、高炉煤气、石油气、裂解气、空气;合金;过磷酸钙、漂白粉、黑火药、铝热剂、水泥、铁触媒、玻璃;煤、石油;石油、石油的各种馏分。【注意】由同素异形体组成的物质为混合物如红磷和白磷。由同位素原子组成的物质是纯净物如H2O与D2O混合为纯净物。21.单质由同种元素组成的纯净物叫单质。如O2、Cl2、N2、Ar、金刚石、铁(Fe)等。HD、16O、18O也属于单质,单质分为金属单质与非金属单质两种。22.化合物由不同种元素组成的纯净物叫化合物。从不同的分类角度化合物可分为多种类型,如离子化合物和共价化合物;电解质和非电解质;无机化合物和有机化合物;酸、碱、盐和氧化物等。23.酸电离理论认为:电解电离出的阳离子全部是H+的化合物叫做酸。常见强酸:HCIO4、H2SO4、HCl、HNO3…常见弱酸:H2SO3、H3PO4、HF、HClO、H2CO3、H2SO3、CH3COOH…24.碱电离理论认为,电解质电离时产生的阴离子全部是OHˉ的化合物叫碱。常见强碱:NaOH、KOH、Ba(OH)2、Ca(OH)2…常见弱碱:NH3·H2O、Al(OH)3、Fe(OH)3…25.盐电离时生成金属阳离子(或NH4+)和酸根离子的化合物叫做盐。盐的分类:①正盐:如:(NH4)2SO4、Na2SO4…②酸式盐:如NaHCO3、NaH2PO4、Na2HPO4…③碱式盐:Cu2(OH)2CO3…④复盐:KAl(SO4)2·12H2O…26.氧化物由两种元素组成,其中一种是氧的化合物叫氧化物。(1)氧化物的分类方法按组成分:金属氧化物:Na2O、Al2O3、Fe3O4…非金属氧化物:NO2、CO、SO2、CO2…(2)按性质分:不成盐氧化物:CO、NO成盐氧化物:酸性氧化物:CO2、SO2…碱性氧化物:Na2O2、CuO…两性氧化物:Al2O3、ZnO过氧化物:Na2O2超氧化物:KO227.同素异形体由同种元素所形成的不同的单质为同素异形体。(1)常见同素异形体:红磷与白磷;O2与O3;金刚石与石墨。(2)同素异形体之间可以相互转化,属于化学变化但不属于氧化还原反应。(二)正确使用化学用语1.四种符号(1)元素符号:①表示一种元素(宏观上)。②表示一种元素的一个原子(微观上)。③表示该元素的相对原子质量。(2)离子符号:在元素符号右上角标电荷数及电性符号(正负号),“l”省略不写如:Ca2+、SO42ˉ、C1ˉ、Na+…(3)价标符号:是在元素正上方标正负化合价、正负写在价数前。“l”不能省略。如:、、、、…(4)核素符号:如2713Al、3216S、168O左上角为质量数,左下角为质子数。2.化合价化合价是指一种元素一定数目的原子跟其他元素一定数目的原子化合的性质。①在离子化合物中,失去电子的为正价,失去n个电子即为正n价;得到电子为负价,得到n个电子为负n价。②在共价化合物中,元素化合价的数值就是这种元素的一个原子跟其他元素的原子形成的共用电子对的数目、正负则由共用电子对的偏移来决定,电子对偏向哪种原子,哪种原子就显负价;偏离哪种原子、哪种原子就显正价。③单质分子中元素的化合价为零。3.化学式用元素符号表示单质或化合物的组成的式子成为化学式。根据物质的组成以及结构特点,化学式可以是分子式、实验式、结构简式等。不同的化学式所表示的意义有区别。离子化合物的化学式表示离子化合物及其元素组成,还表示离子化合物中阴、阳离子最简单的整数比,同时也表示离子化合物的化学式量。例如,氢氧化钡这种物质及其组成元素是钡、氢、氧3种元素,化学式还表示了Ba2+与OH?的个数比是1:2,它的化学式量为171。过氧化钠的化学式是Na2O2,但不能写成NaO,在过氧化钠中实际存在的离子是O22?离子,且Na+:O22?为2:1,所以,过氧化钠的化学式只能用Na2O2表示。某些固体非金属单质及所有的金属单质因组成、结构比较复杂,它们的化学式只用元素符号表示。比如红磷的化学式是P。4.分子式用元素符号表示物质的分子组成的式子。一般分子式是最简式的整数倍,多数无机物二者是一致的。但也有例外,如最简式为NO2的分子可能是NO2,也可能是N2O4。有些单质、原子晶体和离子晶体通常情况下不存在简单分子,它的化学式则表示这种晶体中各元素的原子或离子数目的最简整数比,如C、SiO2、CsCl、Na2CO3、2CaSO4·H2O等。分子式的意义:(1)表示物质的元素组成;(2)表示该物质的一个分子;(3)表示分子中各元素的原子个数;(4)表示该物质的相对分子质量。例如,硫酸的分子式是H2SO4,它表示硫酸这种物质,也表示了硫酸的一个分子及分子是由2个氢原子、1个硫原子、4个氧原子组成。H2SO4同时也表示它的相对分子质量为1.008×2+32.07+16.00×4=98.086≈985.实验式也称最简式。仅表示化合物中各元素原子个数比的式子。有机物往往出现不同的化合物具有相同的实验式。如乙炔和苯的实验式是CH,甲醛、乙酸、乳酸和葡萄糖等的实验式是CH2O。已知化合物的最简式和相对分子质量,就可求出它的分子式,如乙酸最简式CH2O,式量为60,(CH2O)n=60,n=2,所以乙酸分子式为C2H4O2。6.电子式在元素符号周围用“·”或“×”表示其最外层电子数的式子。(1)用电子式表示阴离子时要用[]括起,电荷数写在括号外面的右上角。NH4+、H3O+等复杂阳离子也应如此写。(2)书写简单离子构成的离子化合物的电子式时可以遵循下面几点:①简单阳离子的电子式即是离子符号。②简单阴离子的电子式即是元素符号周围有8个小圆点外加[]及电荷数。③阴、阳离子交替排列。如:(3)注意各原子的空间排序及孤对电子、单电子的存在。如:(4)用电子式表示某物质形成过程,要注意“左分右合箭头连”的原则。如:(5)另外,各电子式的书写还应注意力求均匀、对称、易识别。7.结构式用短线将分子中各原子按排列数序和结合方式相互连接起来的式子。书写规律:一共用电子对画一短线,没有成键的电子不画出。氢气(H2)H—H氮气(N2)N≡N氨(NH3)次氯酸(HClO)H—O—Cl用结构式表示有机物的分子结构更具有实用性,并能明确表达同分异构体,例如:乙酸(C2H4O2)甲酸甲酯(C2H4O2)8.结构简式它是结构式的简写,一般用于有机物,书写时应将分子中的官能团表示出来,它可以把连接在相同原子的相同结构累加书写,也不需把所有的化学键都表示出来。例如:乙烷(C2H4O2)CH3CH3新戊烷(C5H12)C(CH3)4苯(C6H6)或乙酸(C2H4O2)CH3COOH9.原子结构示意图用以表示原子核电荷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论