高效率PWM音频功率放大器_第1页
高效率PWM音频功率放大器_第2页
高效率PWM音频功率放大器_第3页
高效率PWM音频功率放大器_第4页
高效率PWM音频功率放大器_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高效率PWM音频功率放大器本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放大器部分采用D类功率放大器确保高效,在5V供电情况下输出功率大于1W,且输出波形无明显失真,低频输出噪声电压很低(输出频率为20kHz以下时,低频噪声电压约1mV);信号变换部分采用差分放大电路,将双端输出信号变为11的单端输出信号;输出功率显示部分用乘法器电路及带A/D转换的电压表头显示功率值,电路简单合理;保护电路部分采用电流互感器监控,实现输出短路保护。1、题目分析及设计方案论证与比较根据题目要求,整个系统由D类PWM功率放大器、信号转换电路及功率测量显示装置组成。其中核心部分为D类PW

2、M功率放大器。之所以选择此方案是因为D类PWM功放能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高频干扰,从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图3.1所示。下面我们分别论述框图中各部分设计方案。图3.1 系统组成框图2、总体设计思路根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器(即D类功率放大器)。脉宽调制电路(PWM)的脉宽调制原理如图3.2所示。图3.2 脉宽调制原理图一般的D类放大器电路的工作原理是用“振荡发生器”输出的三角波与来自外部的模拟音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音

3、频信号幅值成正比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。在音频信号的前半周(正电压),脉宽调制方波的占空比小于50%,使高端MOS管饱和导通,输出瞬间脉冲电压Vec0=Vcc。在音频信号的后半周(负电压),低端MOS饱和导通,电压0Vec=Vcc。将输出的脉宽调制电压经LC低通网络滤除高频成分,在负载端得到与输入模拟信号相似但被放大了的电压。D放大器虽有较大难度但可大大提高效率,且失真很小,波形放大效果良好,而且配合以较好的滤波网络克服了高频干扰。系统原理框图如图3.3所示。可采用AD521实现双端输入变单端输出的信号变换。在测试部分采用乘法器将变换电路输出的信号电压加以平

4、方,经分压送至表头显示。图3.3 系统原理框图第1节 PWM功率放大器实验一三角波发生器及误差放大器用555芯片构成三角波发生电路,如图3.4所示。图3.4 三角波发生电路本设计利用555组成的多谐振荡器的C4充放电特性加以改进,实现C4的线性充放电获得三角波。利用VT1、VT2和R6构成的恒流源对C4实现线性充电,利用VT3、VT4和R7构成的恒流源实现对C4的放电,电容C4的三角波经VT5射极跟随器输出该振荡器的震荡频率f=0.33/(116R7)C4。按图中各元件的参数,我们得到了一个线性很好、频率约为100kHz、峰峰值为2.18V的三角波,将其输入到脉宽调制比较器的一个输入端。该部分

5、的作用是将输入信号按比例放大以便与三角波比较,通过以OP-37运算放大器为核心加上相关元件形成反向比例放大电路,电路如图3.5所示。图3.5误差放大器电路R2、R4共同分压将OP-37脚的电压抬至2.5V,这样可使放大后的波形中点在2.5V处,且是下对称无失真,放大比例系数由R3和R1决定,即A=R3/R1,C1、C3起隔直作用,电容C2的作用是用来限制通频带的宽度。C2越大,频带越窄;C2越小,频带越宽。实验二脉宽调制比较器及死区时间控制该部分的作用是将误差放大器输出的波形与三角波发生器输出的波形进行比较。输出一个脉宽与误差放大器输入信号幅值成比例的可变脉宽方波。三角波频率远远高于输入信号频

6、率,相当于对输入信号采样点大大增加,从而保证还原后的波形不失真。其中核心器件为LM139,该芯片为四比较器集成电路。这里所要注意的是必须使三角波和音频信号的电压中心线重合,即LM139的、管脚的静态电位相同,否则脉宽调制信号的占空比将不能在要求的范围内变化。我们通过可调电阻R12来实现这一要求。脉宽调制比较器电路如图3.6所示。图3.6 脉宽调制比较器电路提示:死区时间不应超过调制脉冲的1/10,否则输出的波形将出现明显的失真;另外,死区时间也不可过短,否则桥路管子将会共同导通,在极短的时间内大电流将从MOS1、MOS2和MOS3、MOS4同时流过,造成电能的损耗,使整体的效率下降,甚至烧毁管

7、子。所以死区时间的建立是整个D类放大器性能提高的关键之一。电路如图3.7所示。图3.7 时间建立电路实验三 高速门开关和滤波网络高速门开关和滤波网络电路如图3.8所示。驱动电路除注意其驱动能力外,还应注意要使其反应尽量快,提高对窄脉冲的反应,以保证对波形的完整还原。在高速低耗的MOS管的D极和S极间反向并联上高速二极管(VD1VD4),使电感(L1、L2)上产生的电流在死区时间内快速泄放,以保证下一个调制脉冲的电流正常工作,否则桥臂会出现电流的停滞,输出波形将会出现失真、幅值过小等。滤波网络的主要功能是滤除高次谐波,还原调制波中所带载的低频信号。滤除效果的好坏主要取决于与负载相并联的电容的大小

8、,电容越大,滤波效果越好,但是电容越大,放大器的频带宽度、放大倍数及频率都会受到影响。通过反复实验,我们选择了4.7F的电容,使上述三者达到了较好优化。此外,电感大小也是影响这三者的重要因数,电感相对小时,会大大提高三者的指标,但过小又会降低高次谐波的滤除效果,实验证明选择20F的电感较为合适。图3.8 高速门开关和滤波网络第2节功率测量与保护实验四 信号变换电路及保护电路信号变换电路如图3.9所示。精密放大器AD521有高输入阻抗、悬浮输入、高共模抑制比、高精度、低漂移和低噪声的特点。联入网络之前,应首先对AD521进行调零,即输入短路时,调整、管脚间10k的滑动变阻器,使输出为零。接入网络

9、后,1M电阻和100k电阻的分压比为1/10,所以放大器的放大倍数应为10才能使变换电路总的放大倍数为1。通过调整5k的滑动变阻器使放大器的放大倍数为10。这样就得到了一个放大倍数为1的信号变换电路,将功率放大器双端输出信号转换为单端输出。图3.9 信号变换电路保护电路如图3-10所示。用电流互感器取主电路电流,经变换后送到滞回电压比较器,形成短路保护信号,送至高速开关电路,锁定脉宽调制信号输出,达到可靠的输出短路保护功能。图3-10 保护电路实验五 功率测量电路在负载一定时(8),功率与电压的平方成正比,所以我们将变换电路的输出接低通网络后再接入由乘法器搭成的平方电路。功率测量电路如图3.1

10、1所示。图3.11 功率测量电路乘法器芯片我们用的是AD533,其那边包含了一个运放。此电路的关键部分在电路调零。我们的调零是在、管脚短接的情况下进行的,步骤如下: 当X=0时,调ZO使输出为0V。 当X=10VDC时,调增益使丝绸为+10VDC。 当X=10VDC时,调XO使误差减半,再调增益使误差为零。 当输入接地时,检查输出补偿。如果输出不为零,重复上述步骤直至输出无误差。测试表头是测量直流电压的三位半表头,所以要将交流变为直流。我们将平方电路的输出接滤波网络变为直流后接入表头,使其作为功率来显示功率放大器的输出功率。其边比可由乘法器AD533内部运放的放大倍数调节,调节、管脚的电阻值,

11、使功率表输出的精度优于5%。第3节调试与分析1.误差放大器 放大倍数A=R3/R1=5;使R2=R4,则保证了输出波形上下于2.5V对称;随C2的减小,误差放大器频带将会变宽,当C2=180pF时,频带为20kHz。2.三角波调试 我们通过改变电容C4值来改变频率。变大电容值,频率变低;变小电容值,频率变高。最终我们取C4为4700pF,使三角波频率约为100kHz。3.比较器调试 其关键操作是必须保证输入两信号的中心电压相同从而才能正确比较;方法是先将误差放大器输出波中心电压确定,通过调节R12来改变三角波中心电压。4.死区时间 采用示波器的双路通道,观察两个输出端的波形。通过变换电阻和电容的大小,使两个小波形的高电平部分不会出现重合的部分,保证死区时间不会过小。在整体调试时,采用上述方法来取得整体的最优效果。5.高速门电路 检测两桥臂的输出部分,观察其死区时间的大小。应尽量保证死区时间小于调制脉宽的1/10,并注意输出电压的峰峰值应大于4.8V,否则,说明桥臂上的管子的速度不匹配。信号变换电路及功率测量显示电路的调试参见总体设计部分及图3-1所示。6.测量结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论