螺杆压缩机外文文献翻译@中英文翻译@外文翻译_第1页
螺杆压缩机外文文献翻译@中英文翻译@外文翻译_第2页
螺杆压缩机外文文献翻译@中英文翻译@外文翻译_第3页
螺杆压缩机外文文献翻译@中英文翻译@外文翻译_第4页
螺杆压缩机外文文献翻译@中英文翻译@外文翻译_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

英文原文 Screw Compressors N. Stosic I. Smith A. Kovacevic Screw Compressors Mathematical Modelling and Performance Calculation With 99 Figures ABC Prof. Nikola Stosic Prof. Ian K. Smith Dr. Ahmed Kovacevic City University School of Engineering and Mathematical Sciences Northampton Square London EC1V 0HB U.K. e-mail: n.stosiccity.ac.uk i.k.smithcity.ac.uk a.kovaceviccity.ac.uk Library of Congress Control Number: 2004117305 ISBN-10 3-540-24275-9 Springer Berlin Heidelberg New York ISBN-13 978-3-540-24275-8 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media _c Springer-Verlag Berlin Heidelberg 2005 Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: by the authors and TechBooks using a Springer LATEX macro package Cover design: medio, Berlin Printed on acid-free paper SPIN: 11306856 62/3141/jl 5 4 3 2 1 0 Preface Although the principles of operation of helical screw machines, as compressors or expanders, have been well known for more than 100 years, it is only during the past 30 years that these machines have become widely used. The main reasons for the long period before they were adopted were their relatively poor efficiency and the high cost of manufacturing their rotors. Two main developments led to a solution to these difficulties. The first of these was the introduction of the asymmetric rotor profile in 1973. This reduced the blowhole area, which was the main source of internal leakage by approximately 90%, and thereby raised the thermodynamic efficiency of these machines, to roughly the same level as that of traditional reciprocating compressors. The second was the introduction of precise thread milling machine tools at approximately the same time. This made it possible to manufacture items of complex shape, such as the rotors, both accurately and cheaply. From then on, as a result of their ever improving efficiencies, high reliability and compact form, screw compressors have taken an increasing share of the compressor market, especially in the fields of compressed air production, and refrigeration and air conditioning, and today, a substantial proportion of compressors manufactured for industry are of this type. Despite, the now wide usage of screw compressors and the publication of many scientific papers on their development, only a handful of textbooks have been published to date, which give a rigorous exposition of the principles of their operation and none of these are in English. The publication of this volume coincides with the tenth anniversary of the establishment of the Centre for Positive Displacement Compressor Technology at City University, London, where much, if not all, of the material it contains was developed. Its aim is to give an up to date summary of the state of the art. Its availability in a single volume should then help engineers in industry to replace design procedures based on the simple assumptions of the compression of a fixed mass of ideal gas, by more up to date methods. These are based on computer models, which simulate real compression and expansion processes more reliably, by allowing for leakage, inlet and outlet flow and other losses, VI Preface and the assumption of real fluid properties in the working process. Also, methods are given for developing rotor profiles, based on the mathematical theory of gearing, rather than empirical curve fitting. In addition, some description is included of procedures for the three dimensional modelling of heat and fluid flow through these machines and how interaction between the rotors and the casing produces performance changes, which hitherto could not be calculated. It is shown that only a relatively small number of input parameters is required to describe both the geometry and performance of screw compressors. This makes it easy to control the design process so that modifications can be cross referenced through design software programs, thus saving both computer resources and design time, when compared with traditional design procedures. All the analytical procedures described, have been tried and proven on machines currently in industrial production and have led to improvements in performance and reductions in size and cost, which were hardly considered possible ten years ago. Moreover, in all cases where these were applied, the improved accuracy of the analytical models has led to close agreement between predicted and measured performance which greatly reduced development time and cost. Additionally, the better understanding of the principles of operation brought about by such studies has led to an extension of the areas of application of screw compressors and expanders. It is hoped that this work will stimulate further interest in an area, where, though much progress has been made, significant advances are still possible. London, Nikola Stosic February 2005 Ian Smith Ahmed Kovacevic Notation A Area of passage cross section, oil droplet total surface a Speed of sound C Rotor centre distance, specific heat capacity, turbulence model constants d Oil droplet Sauter mean diameter e Internal energy f Body force h Specific enthalpy h = h(), convective heat transfer coefficient between oil and gas i Unit vector I Unit tensor k Conductivity, kinetic energy of turbulence, time constant m Mass m Inlet or exit mass flow rate m = m () p Rotor lead, pressure in the working chamber p = p() P Production of kinetic energy of turbulence q Source term Q Heat transfer rate between the fluid and the compressor surroundingsQ= Q() r Rotor radius s Distance between the pole and rotor contact points, control volume surface t Time T Torque, Temperature u Displacement of solid U Internal energy W Work output v Velocity w Fluid velocity V Local volume of the compressor working chamber V = V () V Volume flow VIII Notation x Rotor coordinate, dryness fraction, spatial coordinate y Rotor coordinate z Axial coordinate Greek Letters Temperature dilatation coefficient Diffusion coefficient Dissipation of kinetic energy of turbulence i Adiabatic efficiency t Isothermal efficiency v Volumetric efficiency Specific variable Variable Lame coefficient Viscosity Density Prandtl number Rotor angle of rotation Compound, local and point resistance coefficient Angular speed of rotation Prefixes d differential Increment Subscripts eff Effective g Gas in Inflow f Saturated liquid g Saturated vapour ind Indicator l Leakage oil Oil out Outflow p Previous step in iterative calculation s Solid T Turbulent w pitch circle 1 main rotor, upstream condition 2 gate rotor, downstream condition Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Types of Screw Compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 The Oil Injected Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 The Oil Free Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Screw Machine Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Screw Compressor Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5RecentDevelopments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.1RotorProfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2CompressorDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2ScrewCompressorGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Envelope Method as a Basis for the Profiling of Screw Compressor Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Screw Compressor Rotor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Rotor Profile Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Review of Most Popular Rotor Profiles . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Demonstrator Rotor Profile (“N” Rotor Generated) . . . . 24 2.4.2 SKBK Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.3 Fu Sheng Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.4 “Hyper” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.5 “Sigma” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.6 “Cyclon” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.7 Symmetric Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.8 SRM “A” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.9 SRM “D” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.10 SRM “G” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.11 City “N” Rack Generated Rotor Profile . . . . . . . . . . . . . 32 2.4.12 Characteristics of “N” Profile . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.13 Blower Rotor Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 X Contents 2.5 Identification of Rotor Position in Compressor Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Tools for Rotor Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6.1 Hobbing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6.2 Milling and Grinding Tools . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6.3 Quantification of Manufacturing Imperfections . . . . . . . . 48 3 Calculation of Screw Compressor Performance . . . . . . . . . . . . . 49 3.1 One Dimensional Mathematical Model . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Conservation Equations for Control Volume and Auxiliary Relationships . . . . . . . 50 3.1.2 Suction and Discharge Ports . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.3 Gas Leakages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.4 Oil or Liquid Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.5 Computation of Fluid Properties . . . . . . . . . . . . . . . . . . . . 57 3.1.6 Solution Procedure for Compressor Thermodynamics . . 58 3.2 Compressor Integral Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 Pressure Forces Acting on Screw Compressor Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.1 Calculation of Pressure Radial Forces and Torque . . . . . 61 3.3.2 Rotor Bending Deflections . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4 Optimisation of the Screw Compressor Rotor Profile, Compressor Design and Operating Parameters . . . . . . . . . . . . . . 65 3.4.1 Optimisation Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2 Minimisation Method Used in Screw Compressor Optimisation . . . . . . . . . . . . . . . . . 67 3.5 Three Dimensional CFD and Structure Analysis of a Screw Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Principles of Screw Compressor Design . . . . . . . . . . . . . . . . . . . 77 4.1 Clearance Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.1 Load Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.2 Compressor Size and Scale . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.3 Rotor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Calculation Example: 5-6-128mm Oil-Flooded Air Compressor . . . . . . . . . . . . . . . . . . . 82 4.2.1 Experimental Verification of the Model . . . . . . . . . . . . . . . 84 5 Examples of Modern Screw Compressor Designs . . . . . . . . . . 89 5.1 Design of an Oil-Free Screw Compressor Based on 3-5 “N” Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2 The Design of Family of Oil-Flooded Screw Compressors Based on 4-5 “N” Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Contents XI. 5.3 Design of Replacement Rotors for Oil-Flooded Compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4 Design of Refrigeration Compressors . . . . . . . . . . . . . . . . . . . . . 100 5.4.1 Optimisation of Screw Compressors for Refrigeration . . . 102 5.4.2 Use of New Rotor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . .103 5.4.3 Rotor Retrofits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4.4 Motor Cooling Through the Superfeed Port in Semihermetic Compressors . . . . . . . . . . . . . . . . . . . . . . 103 5.4.5 Multirotor Screw Compressors . . . . . . . . . . . . . . . . . . . . . . 104 5.5 Multifunctional Screw Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5.1 Simultaneous Compression and Expansion on One Pair of Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5.2 Design Characteristics of Multifunctional Screw Rotors .109 5.5.3 Balancing Forces on Compressor-Expander Rotors . . . . . 110 5.5.4 Examples of Multifunctional Screw Machines . . . . . . . . . 111 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A Envelope Method of Gearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 B Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 C Estimation of Working Fluid Properties . . . . . . . . . . . . . . . . . . . 127 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133中文译文 螺杆压缩机 N.斯托西奇史密斯先生 A 科瓦切维奇 螺杆压缩机 计算的数学模型和性能 尼古拉教授 斯托西奇教授 伊恩史密斯博士 艾哈迈德科瓦切维奇 工程科学和数学 北安普敦 广场伦敦城市大学 英国 电子邮件: n.stosiccity.ac.uk i.k.smithcity.ac.uk a.kovaceviccity.ac.uk 国会图书馆控制号: 2004117305 isbn-10 3-540-24275-9 纽 约施普林格柏林海德堡 isbn-13 978-3-540-24275-8 纽约施普林格柏林海德堡 这项工作是受版权保护 ,我们 保留所有权利 。 无论材料的全部或部分关注的是特定的权利,尤其是 翻译,转载,插图,朗诵,广播复用或以任何其他方式复制,并在银行数据存储 的权利 。本出版物或其部分仅仅是在 1965 年 9 月 9 日的德国版权法规定允许复制,目前的版本,并允许使用必须得到施普林格 的允许 。违法行为 将会遭受 德国版权法的起诉。 施普林格是施普林格科学 +商业媒体的一部分 施普林格出版社柏林印 刷在荷兰海德堡 2005 一般描述性名称,注册域名,商标的使用,本出版物中做等。 排版:由作者使用 施普林格 乳胶宏包封面设计:中部,柏林 打印在无酸纸旋转: 11306856 62 3141 JL 543210 虽然螺旋机的工作原理,压缩机或膨胀机,已超过 100 年,这是在过去的 30 年里,这些机器已 经被 广泛使用。主要 因为以前 他们采取了相对贫穷的效率和制造成本高的转子。两个主要的 技术革新 解决 了 这些 困难 。 第一个出现 在 1973 年的 不对称转子。这减少了打击孔的 面积,这是内部泄漏的主要来源,约 90%,从而提高了热力学效 率, 这些机器 大约是传统的往复式压缩机的同一水平。第二个是精密螺纹铣削机床。这使它能够制造形状复杂的物品,如 转 子,既准确又便宜。 从那以后,由于他们不断改进,可靠性高性 能 和紧凑的形式,螺杆压缩机已越来越多的占领 压缩机市场,尤其是在压缩空气生产的领域,制冷和空调,而今天,制造工业压缩机占相当大的比例是 也 这种类型的。 尽管,现在广泛使用的螺杆压缩机和许多科学发展论文出版,只有一小部分教科书已经出版,使其操作和没有这些原则的论述严谨是英文的。 本书的出版恰逢城市大学第十周年的设立 。它 为正位移压缩机技术 突 出贡献,位于伦敦,如果不是 他,这 所有的材料 就不会被发明。 它的目的是给了艺术的状态的数据汇总。在一个单一的体积的可用性将帮助工程师在工业取代基于一个简单的假设压缩程序设计固定的理想气体的质量,通过更多的最新方法。这些都是基于计算机模型,模拟实际的压缩和膨胀过程更可靠,通过允许泄漏,入口和出口和其他损失,和工作过程中的实际性质的假设。同时,方法提出了发展转子,基于齿轮啮合的数学理论,而不是经验曲线拟合。 此外,一些描述包括通过这些机器的热三维建模程序和如何相互作用的转子和壳体之间产生性能的变化,至今无 法计算。结果表明,只有一小数量的输入参数来描述的几何形状和螺杆压缩机的性能。这使得它很容易控制的设计过程,修改阳离子可以交叉引用通过设计软件程序,从而节省计算机重新来源和设计时间,与传统的设计方法相比。 所有所描述的分析程序,已经过验证的机器目前在工业生产中,已经导致在性能和尺寸和降低成本的改进,它几乎没有考虑可能十年前就。此外,在所有情况下,这些应用,分析模型的精度提高了预测值与实测性能大大减少开发时间和成本彪密切之间的协议。此外,的操作原则所带来的这些研究更好的理解导致螺杆压缩机和膨胀机的应用领域的扩 展。人们希望这项工作将刺激在一个地区,那里的进一步的兴趣,虽然已经取得了很大进展,显斜面的进步仍然是可能的。 伦敦,二月 2005 伊恩史密斯艾哈迈德尼古拉斯托西奇科瓦切维奇 符号 A 通道横截面,油滴表面总面积 a 声音的速度 C 转子中心的距离,比热容,湍流模型常数 d 油滴的平均直径 e 内部能量 f 体力 h 比焓 h= H() ,,对流换热系数石油和天然气之间的系数 i 单位向量 I 单位张量 k 电导率,湍流动能,时间常数 m 质量 .m 入口或出口质量 的 流量 .m =.m ( ) p 转子引线,在工作腔压力( P = P ) P 湍流动能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论