毕业设计(论文)-恒压供水PLC变频调速控制系统设计.doc_第1页
毕业设计(论文)-恒压供水PLC变频调速控制系统设计.doc_第2页
毕业设计(论文)-恒压供水PLC变频调速控制系统设计.doc_第3页
毕业设计(论文)-恒压供水PLC变频调速控制系统设计.doc_第4页
毕业设计(论文)-恒压供水PLC变频调速控制系统设计.doc_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计(论文)恒压供水PLC变频调速控制系统设计专业(系) 电气工程系 班 级 电机电器091 学生姓名 指导老师 完成日期 2011-11-5 湖南铁道职业技术学院毕业设计(论文 ) 目 录1第1章任务与要求51.1课题概述71.1.1变频恒压供水概论81.2变频恒压供水的应用91.3 变频恒压供水的现状及发展10第2章 变频恒压供水系统的基本构成和工作原理122.1.1恒压供水系统的工作原理122.1.2 调速泵系统构成142.1.3变频恒压供水系统各元件的选择192.1.4变频器的基本原理及特点212.1.5电压型变频器27第3章PLC的选择及作用283.1.1 PLC的介绍.293.1.2 的发展阶段及发展方向303.1.3 的特点与应用领域313.1.4 可编程序控制器的特点313.1.5 可编程序控制器与继电器控制系统的比较313.1.6 可编程序控制器的应用领域313.1.7 在现代自动控制系统应用中所面临的问题323.2 我国常用的性能比较研究323.2.1 的一般结构323.2.2 基本工作原理343.3 我国常用的性能特点353.3.1 SIMATIC S7系列353.3.2 S7-300系列可编程序控制器353.3.3 控制系统设计内容353.3.4 控制系统设计步骤363.4 PLC的选型36第4章 基于PLC的变频恒压供水系统设计374.1系统要求374.2控制系统的I/O分配及回路设计384.3第三节外围接线图39第5章 结束语及感想41致 谢41摘要本文是在我国城市化日益进步的情况下,城市高层建筑日益发展所面临的问题所提出的,建筑越建越高,这就出现了一个问题:那就是供水问题。本课题经由学院提出分配到我们组,我们深入探讨,指导老师也及时的给予我们帮助,本文主要涉及课题的讨论,历史背景,以及所面临的问题,在此基础上要实现高层建筑的恒压供水需要哪些技术积累,在实际供水中水锤效应的产生,以及它所造成的危害,解决的办法,本文都详实的做了探讨,PLC,变频器的应用这些技术的发展都使得恒压供水成为现实。变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。本系统包含三台水泵电机,它们组成变频循环运行方式。采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。通过工控机与PLC的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。关键字:恒压供水 变频器 PLC 设计 调试第1章任务与要求1.1课题概述PLC控制的恒压无塔供水是一种新的控制方式,主要是针对城市高层建筑的供水问题。它一方面能通过变频调速的恒压控制实现供水的水压稳定,提高供水质量,另一方面能保证供水质量的可靠性和安全性。2、设计内容与要求1)工艺流程图2)控制要求(1)二台水泵根据恒压要求,采取“先开先停”的原则接入和运行,即:启动时,M1先变频启动,用水量一定时,变频器频率稳定在某一值。用水量增加时,M1输出频率增加,当达到50HZ后,延时5S,M1切换为工频运行,M2变频启动运行。当用水量又减小时,经延时5S,M1停,M2仍为变频运行。用水量继续减小,M2将运行与最低转速。如此时用水量增加,M2转为工频,M1变频,如此周而复始。(每一状态之间的转换均有融S延时)(2)二台泵采用变频器控制其启动和水压的恒压控制(3)具有完善的运行显示和报警显示,如变频器故障显示、变频运行显示、工频运行显示(4)在应急或临时检修时,对泵的操作有工频手动控制功能。人类生存和发展都离不开水。在通常的城市及乡镇供水中,基本上都是靠供水站的电动机带动离心水泵,产生压力使管网中的自来水流动,把供水管网中的自来水送给用户。但供水机泵供水的同时,也消耗大量的能量,如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能耗,将具有重要经济意义。我国供水机泵的特点是数量大、范围广、类型多,在工程规模上也有一定水平,但在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,有一定的差距随着社会经济的迅速发展,人们对供水质量和供水系统的可靠性要求不断提高。衡量供水质量的重要标准之一是供水压力是否恒定,因为水压恒定于某些工业或特殊用户是非常重要的,如当发生火警时,若供水压力不足或无水供应,不能迅速灭火,会造成更大的经济损失或人员伤亡.但是用户用水量是经常变动的,因此用水和供水之间的不平衡的现象时 有发生,并且集中反映在供水的压力上:用水多而供水少,则供水压力低;用水少而供 水多,则供水压力大。保持管网的 水压恒定供水,可使供水和用水之间保持平衡,不但提高了供水的产量和质量,也确保了供水生产以及电机运行的安全可靠性。对于大多数采用供水企业来说,传统供水机泵存在日常运行费用太高,供水成本居高不下,单位供水的能耗偏大的问题,寻求供水与能耗之间的最佳性价比,是困扰企业的一个长期问题。目前各供水厂的供水机泵设计按最大扬程与最大流量这一最不利条件设计,水泵大多数时间在设计效率以下运行。导致电动机与水泵之间常常出现大马拉小车问题。因此,如何解决供水与能耗之间的不平衡,寻求提高供水效率的整体解决方案,是各供水解水企业关心的焦点问题之一。变频调速技术以其显著的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用。利用变频技术与自动控制技术相结合,在中小型供水企业实现恒压供水,不仅能达到比较明显的节能效果,提高供水企业的效率,更能有效保证从水系统的安全可靠运行.变频恒水压供水系统集变频技术、电气传动技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时可达到良好的节能性,提高供水效率。所以研究设计基于PLC变频调速的恒定水压供水系统(简称变频恒压供水),对于提高企业效率以及人民的生活水平,同时降低能耗等方面具有重要的现实意义。1.1.1变频恒压供水概论对于大多数采用供水企业来说,传统供水机泵存在日常运行费用太高,供水成本居高不下,单位供水的能耗偏大的问题,寻求供水与能耗之间的最佳性价比,是困扰企业的一个长期问题。目前各供水厂的供水机泵设计按最大扬程与最大流量这一最不利条件设计,水泵大多数时间在设计效率以下运行。导致电动机与水泵之间常常出现大马拉小车问题。因此,如何解决供水与能耗之间的不平衡,寻求提高供水效率的整体解决方案,是各供水企业关心的焦点问题之一。随着社会经济的迅速发展,人们对供水质量和供水系统的可靠性要求不断提高。衡量供水质量的重要标准之一是供水压力是否恒定,因为水压恒定于某些工业或特殊用户是非常重要的,如当发生火警时,若供水压力不足或无水供应,不能迅速灭火,会造成更大的经济损失或人员伤亡。但是用户用水量是经常变动的,因此用水和供水之间的不平衡的现象时有发生,并且集中反映在供水的压力上:用水多而供水少,则供水压力低;用水少而供水多,则供水压力大。保持管网的水压恒定供水,可使供水和用水之间保持平衡,不但提高了供水的产量和质量,也确保了供水生产以及电机运行的安全可靠性。变频恒压供水系统能适用于生活用水场合的供水要求,该系统具有以下特点:(1)供水系统的控制对象是用户管网的水压,它是一个过程控制量,同其他一些过程控制量(如:温度、流量、浓度等)一样,对控制作用的响应具有滞后性。同时用于水泵转速控制的变频器也存在一定的滞后效应。(2)用户管网中因为有管阻、水锤等因素的影响,同时又由于水泵自身的一些固有特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。(3)变频调速恒压供水系统要具有广泛的通用性,面向各种各样的供水系统,而不同的供水系统管网结构、用水量和扬程等方面存在着较大的差异,因此其控制对象的模型具有很强的多变性。(4)在变频调速恒压供水系统中,由于有定量泵(即为每转的理论排量不变的泵)的加入控制,而定量泵的控制是时时发生的,同时定量泵的运行状态直接影响供水系统的模型参数,使其不确定性地发生变化,因此可以认为,变频调速恒压供水系统的控制对象是时时变化的。(5)当出现意外的情况(如突然停水、断电、泵、变频器或软启动器故障等)时,系统能根据泵及变频器或软启动器的状态,电网状况及水源水位,管网压力等工况点自动进行切换,保证管网内压力恒定。在故障发生时,执行专门的故障程序,保证在紧急情况下的仍能进行供水。(7)用变频器进行调速,用水泵调节和固定的组合进行恒压供水,节能效果显著,对水泵进行软启动,启动电流可从零到电机额定电流,减少了启动电流对电网的冲击同时减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用1.2变频恒压供水的应用众所周知,水是生产生活中不可缺少的重要组成部分,而变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本Samco公司,就推出了恒压供水基板,备有“变频泵固定方式”、“变频泵循环方式”两种模式它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制3。 它的节能系统特点有如下五点:1、变频器界面为LED显示,设定参数丰富;键盘布局简洁、易于操作;2、变频器有过流、过压、过热、缺相等多种电子保护装置,并具有故障报警输出功能,可有效保护供水系统的正常运作;3、专用数字PID调节器为LED双屏显示,参数设定方便,易于监控;4、加装变频节能器后,水泵电机具有软启动及变频调速功能,可有效降低系统的机械磨损,同时减轻管路负担;5、有“手动”“自动”两种工作模式,在变频器出现故障的情况下,仍可按原有工作方式继续运行。1.3 变频恒压供水的现状及发展目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。原深圳华为电气公司和成都希望集团也推出了恒压供水专用变频器(5.5kw22kw),无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC)的变频恒压供水系统的水压闭环控制研究得不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。1.4工作原理变频恒压供水系统采用一台变频器拖动两台大功率电动机,可在变频和工频两种方式下运行;一台低功率的电机,作为辅助泵电机启动方式:为避免启动时的冲击电流,电机采用变频启动方式,从变频器的输出端得到逐渐上升的频率和电压。启动前变频器要复位。变频调速:根据供水管网流量、压力变化自动控制变频器输出频率,从而调节电动机和水泵的转速,实现恒压供水。如设备的输出电压和频率上升到工频仍不能满足供水要求时,PLC发出指令1号泵自动切换到工频电源运行,待1号泵完全退出变频运行,对变频器复位后,2号泵投入变频运行。多泵切换:根据恒压的需要,采取无主次切换,即“先开先停”的原则接入和退出。在PLC的程序中,通过设置变频泵的工作号和工频泵的台数,由给定频率是否达到上限频率或下限频率来判断增泵或减泵。在用水量较小的情况下,采用辅助泵工作。为了避免一台泵长期工作,任一泵不能连续变频运行超过3小时。当工频泵台数为零,有一台运行于变频状态时,启动计时器,当达到3小时时,变频泵的泵号改变,即切换到另一台泵上。当有泵运行于工频状态,或辅助泵启动时,计时器停止计时并清零。故障处理:能对水位下限,变频器、PLC故障等报警。PLC故障,系统从自动转入手动方式。第2章 变频恒压供水系统的基本构成和工作原理2.1.1恒压供水系统的工作原理根据系统用水量的变化,控制系统控制2台水泵按1一2一3一4一1的顺序运行,以保证正常供水。开始工作时,系统用水量不多,只有 1号泵在变频器控制下运行,2号泵处于停止状态,控制系统处于状态 1。当用水量增加,变频器输出频率增加,则1号泵电机的转速也增加,当变频器增加到最高输出频率时,表示只有1台水泵工作己不能满足系统用水的要求,此时,通过控制系统,1号泵从变频器电源转换到普通的交流电源,而变频器电源启动。2号泵电机,控制系统处于状态2.当系统用水高峰过后,用水量减少时,变频器输出频率减少,若减至设定频率时,表示只有 1台水泵工作已能满足系统用水的要求,此时,通过控制系统,可将 1号泵电机停运,2号泵电机仍由变频器电源供电,这时,控制系统处于状态3。当用水量再次增加,变频器输出频率增加,则2号泵电机的转速也增加,当变频器增加到最高输出频率时,表示只有1台水泵工作已不能满足系统用水的要求,此时,通过控制系统的控制,2号泵从变频器电源转换到普通的交流电源,而变频器电源启动1号泵电机,控制系统处于状态4.当控制系统处于状态4时,用水量又减少,变频器输出频率减少,若减至设定频率时,表示只有1台水泵工作已能满足系统供水的要求,此时,通过控制系统的控制,2号泵从变频器电源转换到普通的交流电源,而变频器电源启动1号泵电机,控制系统处于状态4。当控制系统处于状态4时,用水量又减少,变频器输出频率减少,若减至设定频率时,表示只有1台水泵工作已能满足系统用水的要求,此时,通过控制系统的控制,可将2号泵电机停运,1号泵电机仍由变频器供电,这时,控制系统又回到了状态1。如此循环往复的工作,以满足系统用水的需要。(3)单台变频器控制单台水泵以及其他水泵单台变频器控制单台水泵以及其他水泵启停的控制方案与控制方案2有许多相同之处,只是方案2中,变频器可在水泵电机间轮换工作,而控制方案3则不同,变频器只控制某1台泵,不能去控制其它泵,其它泵工作在普通电源的控制下.下面以2台泵中的1台由变频器供电,另外1台由普通交流电源供电的恒压供水系统来加以说明。2台水泵中,1台是由变频器供电的变速泵,另外 1台为普通交流电压供电的定速泵。当系统用水量较小时,可以只用变频器供电的变速泵,当变频器供电的频率达到最大时,表明1台水泵己不能满足系统用水要求,此时需要启动1台定速泵,由1台变速泵与1台定速泵同时工作。当系统用水量减小到使变频器的输出频率低于某一设定值时,此时控制系统就将定速泵停运,只应用变速泵工作。当变频器供电的频率再次达到最大时,又表明1台水泵已不能满足系统用水要求。此时又需要启动1台定速泵,由1台变速泵与1台定速泵同时工作,循环往复。这种控制方式的优点是结构简单,安装调试方便.但在整个供水过程中由变频器供电的变速水泵总在工作,该水泵一旦出现故障将会影响整个系统的供水。采用变频恒压供水,如果变频器出现故障,应及时报替,并使整个供水过程中由变频器供电的水泵改又普通交流电压供电,使水泵全速运行。为了应付这种事情的发生,在选用水泵时就应考虑到用水系统管网的承受压力,选用流量扬程曲线平缓型的水泵,使管网能够承受水泵全速运行时的全扬程水压.当由多台水泵组成恒压供水系统时,对于控制系统也有一定的要求,应选用功能强大的控制器如Pm调节器及用可编程序控制器进行控制。按照先启动先停止,后启动后停止的原则运行,使水泵能循环运行,通过可编程序控制器的编程,使各台水泵的运行概率相同,避免出现某台水泵经常工作,而其他水泵经常停歇,甚至受潮和生锈的情况I32H3sl水泵电机多采用三相异步电动机,而其转速公式为: (2.1) 式中:f表示电源频率,p表示电动机极对数,s表示转差率。从上式可知,三相异步电动机的调速方法有:(l) 改变电源频率(2) 改变电机极对数(3) 改变转差率改变电机极对数调速的调控方式控制简单,投资省,节能效果显著,效率高,但需要专门的变极电机,是有级调速,而且级差比较大,即变速时转速变化较大,转矩也变化大,因此只适用于特定转速的生产机器。改变转差率调速为了保证其较大的调速范围一般采用串级调速的方式,其最大优点是它可以回收转差功率,节能效果好,且调速性能也好,但由于线路过于复杂,增加了中间环节的电能损耗7,且成本高而影响它的推广价值。下面重点分析改变电源频率调速的方法及特点。根据公式可知,当转差率变化不大时,异步电动机的转速n基本上与电源频率f成正比。连续调节电源频率,就可以平滑地改变电动机的转速。但是,单一地调节电源频率,将导致电机运行性能恶化。随着电力电子技术的发展,已出现了各种性能良好、工作可靠的变频调速电源装置,它们促进了变频调速的广泛应用。2.1.2 调速泵系统构成从变频恒压供水的原理分析可知,该系统主要有压力传感器、压力变送器、变频器、恒压控制单元、水泵机组以及低压电器组成.系统主要的设计任务是利用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软启动以及变频水泵与工频水泵的切换,同时还要能对运行数据进行传输。 (2)通用变频器十单片机(包括变频控制、调节器控制)十人机界面+压力传感器;通过变频恒压供水系统我们可以看出变频调速恒压供水系统由执行机构信号检测、控制系统、人机界面、通讯接口以及报警装置等部分组成。变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上10。变频恒压供水系统的结构框图如图2.1所示: 图2.1变频恒压供水系统框图针对这次的设计的对象是一栋楼房的供水系统。由于高层楼对水压的要求高,在水压低时,高层用户将无法正常用水甚至出现无水的情况,水压高时将造成能源的浪费。如图2.2所示,是这栋小楼的供水流程。自来水厂送来的水先储存的水池中再通过水泵加压送给用户。通过水泵加压后,必须恒压供给每一个用户。图变频恒压供水系统控制流程图从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:(l) 执行机构:执行机构是一台水泵,它们用于将水供入用户管网,其中这台水泵中包括工频和变频两种形式,变频形式工作是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频形式工作只运行于启、停两种工作状态,用以在用水量很大(变频时达到工频运行状态都无法满足用水要求时)的情况下投入工作。(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号。管网水压信号反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。此信号是模拟信号,读入PLC时,需进行A/D转换。另外为加强系统的可靠性,还需对供水的上限压力和下限压力用电接点压力表进行检测,检测结果可以送给PLC,作为数字量输入;信号有效时,控制系统要对系统实施保护控制,以防止水泵空抽水而损坏电机和水泵。 (3) 控制机构:供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。供水控制器是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的压力进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进行控制;变频器是对水泵进行转速控制的单元,其跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。根据水泵机中水泵被变频器拖动的情况不同,变频器有两种工作方式即变频循环式和变频固定式,变频循环式即变频器拖动一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,系统先将变频器从该水泵电机中脱出,将该泵切换为工频的同时用变频去拖动电机;变频固定式是 变频器拖动一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,系统直接启动变成恒速水泵运行,变频器不做器固定拖动的水泵在系统运行前可以选择,本设计中采用前者变频恒压供水系统工作原理合上空气开关,供水系统投入运行。将手动、自动开关打到自动上,系统进入全自动运行状态,PLC中程序首先接通KM2,并起动变频器。根据压力设定值(根据管网压力要求设定)与压力实际值(来自于压力传感器)的偏差进行PID调节,并输出频率给定信号给变频器。变频器根据频率给定信号及预先设定好的加速时间控制水泵的转速以保证水压保持在压力设定值的上、下限范围之内,实现恒压控制。同时变频器在运行频率到达上限,会将频率到达信号送给PLC,PLC则根据管网压力的上、下限信号和变频器的运行频率是否到达上限的信号,当变频器运行频率达到频率上限值,并保持一段时间,则PLC会将当前变频运行泵切换为工频运行。城市供水系统在自动状态下,各类设备的控制根据操作面板上的按钮输入来控制,无逻辑限制,即不根据传感器的状态进行控制。在自动方式下进行开环控制,系统根据检测到外部传感器的状态如下:1)其次,采集压力传感器反馈的信号,将该传感器输出的模拟信号转换成PLC可处理数字信号。2)再次,PLC根据压力反馈值,以及变频输出,对模拟量进行数据处理。3)最后,在PLC中数据经过计算后,产生控制信号来实现对驱动的控制。就是工作过程。变频恒压供水系统主程序流程图2.1.3变频恒压供水系统各元件的选择1 变频器的选择变频器在现实使用具有节能、占地面积小、投人少、效率高、配置灵活、功能齐全、自动化程度高、可直接从水源供水、实现无人值守。它在该系统中是控制执行机构的硬件,通过频率的改变实现对电机转速的调节,从而改变出水量。变频器的选择必须根据水泵电机的功率和电流进行选择。本系统中要实现监控,所以变频器还应具有通讯功能。根据控制功能不同,通用变频器可分为三种类型:普通功能型U/f控制变频器、具有转矩控制功能的高功能型U/f控制变频器以及矢量控制高功能型变频器。供水系统属泵类负载,低速运行时的转矩小,可选用价格相对便宜的U/f控制变频器。变频器具有过压、欠压、过流、过载、短路、失速等自动保护功能。能实现电机软起动,减小电气和机械冲击噪音,延长设备使用寿命。从而本设计采用FR-F740变频器。它的接线图如下图所示: 压力传感器与变频器接线图2水泵的选择根据本设计要求并结合实际中小区生活用水情况,最终确定确定采用上海熊猫机械有限公司生产的SFL系列水泵机组(电机功率75KW)。SFL型低噪音生活给水泵在外壳、轴上采用不锈钢材质,叶轮、导叶采用铸造件,经过静电喷塑处理,效率可提高5%以上;采用低噪音电机,机械密封,前端配有泄压保护装置,噪声更低(室外噪音60分贝)、磨损小、寿命更长;下轴承采用柔性耐磨轴承,噪音低,寿命长;采用低进低出的结构设计,水力模型先进,性能更可靠。它可以输送清水及理化性质类似于水的无颗粒、无杂质不挥发、弱腐蚀介质,一般用在城市给排水、锅炉给水、空调冷却系统、消防给水等。因此本设计中选择电机功率为75KW的上海熊猫机械有限公司生产的SFL系列水泵1台。3 压力传感器的选择传感器由敏感芯体和信号调理电路组成,当压力作用于传感器时,敏感芯体内硅片上的惠斯登电桥的输出电压发生变化,信号调理电路将输出的电压信号作放大处理,同时进行温度补偿、非线性补偿,使传感器的电性能满足技术指标的要求。并且压力传感器用于检测管网中的水压,常装设在泵站的出水口,压力传感器和压力变送器是将水管中的水压变化转变为15V或420mA的模拟量信号,作为模拟输入模块(A/D模块)的输入,在选择时,为了防止传输过程中的干扰与损耗。本设计采用压力传感器选择使用CY-YZ-1001型绝对压力传感器它的接线图如下图所示:压力传感器接线图2.1.4变频器的基本原理及特点变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。常用三相交流异步电动机的结构为图1所示。定子由铁心及绕组构成,转子绕组做成笼型(见图2),俗称鼠笼型电动机。当在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。电机磁场的转速称为同步转速,用N表示N=60f/p(r/min) (1)式中:f三相交流电源频率,一般为50Hz;p磁极对数。当p=1时,N=3000r/min;p=2时,N=1500r/min。可见磁极对数p越多,转速N越慢。转子的实际转速n比磁场的同步转速N要慢一点,所以称为异步电机,这个差别用转差率s表示:s=n1n)/n1100% (2)当加上电源转子尚未转动瞬间,n=0,这时s=1;起动后的极端情况n=N,则s=0,即s在01之间变化。一般异步电机在额定负载下的s=(16)%。综合式(1)和式(2)可以得出图1 三相异步电动机 图2笼型电动机的转子绕组) 1机座;2定子铁心;3定子绕组;4转子铁心;5转子绕组1铜环;2铜条由式(3)可以看出,对于成品电机,其磁极对数p已经确定,转差率s变化不大,则电机的转速n与电源频率f成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。但是,为了保持在调速时电机的最大转矩不变,必须维持电机的磁通量恒定,因此定子的供电电压也要作相应调节。变频器就是在调整频率(VariableFrequency)的同时还要调整电压(VariableVoltage),故简称VVVF(装置)。通过电工理论分析可知,转矩与磁通量(最大值)成正比,在转子参数值一定时,转矩与电源电压的平方成正比。变频器的工作原理是把市电(380V、50Hz)通过整流器变成平滑直流,然后利用半导体器件(GTO、GTR或IGBT)组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制(SPWM)方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。上述的两次变换可简化为ACDCAC(交直交)变频方式。图3给出国产(深圳华为)变频器的原理图。图中各组成部分名称已经标出,DSP是微机编程器。利用变频器可以根据电机负载的变化实现自动、平滑的增速或减速,基本保持异步电机固有特性转差率小的特点,具有效率高、范围宽、精度高且能无级变速的优点,这对于水泵,风机等设备是很适用的。我国应用的变频器,国外产品以日本富士、三菱牌号较多,台湾普传产品也不少,国内有西普(西安)、艾伦(上海)、华为(深圳)、艾普斯(天津)等厂家的产品均在推广应用。 给异步电动机提供调压调频电源的电力变换部分,称为主电路。下面是典型的电压逆变器的原理图。其主电路由三部分构成,整流器、无功缓冲直流环节、逆变器。变频器的结构主电路一、主电路给异步电动机提供调压调频电源的电力变换部分,称为主电路。图1示出了典型的电压逆变器的例子。其主电路由三部分构成,将工频电源变换为直流功率的整流器,吸收在变流器和逆变器产生的电压脉动的平波回路,以及将直流功率变换为交流功率的逆变器。另外,异步电动机需要制动时,有时要附加制动回路 。图1 变频器主电路示意图1、整流器最近大量使用的是二极管的变流器,如图1所示,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。2、平波回路在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。3、逆变器同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。4、制动回路异步电动机在再生制动区域使用时(转差率为负),再生能量存于平波回路电容器中,使直流电压升高。一般说来,由机械系统(含电动机)惯量积累的能量比电容能储存的能量大,需要快速制动时,可用可逆变流器向电源反馈或设置制动回路(开关和电阻)把再生功率消耗掉,以免直流电路电压上升。5、异步电动机的四象限运行根据负载种类,所需要的异步电动机旋转方向和转矩方向是不同的,必须根据负载构成适当的主电路图。在、象限异步电动机的转矩方向与旋转方向一致,为电动状态。象限是正转的电动运转,象限是反转的电动运转。在,象限器转矩方向与旋转方向相反,为再生状态。象限为正转的再生运转,象限为反转的再生运转。电动运转时,则只需由电源向异步电动机供给功率,可使用不可逆变流器。对于减速时需要制动力的负载,功率就必须从异步电动机向逆变器流传,可附加制动回路以便能在,象限使用。另外,对于需要急加减速并且加减速频繁的场所(例如电梯),或者对于制动为主要目的的场合,可以采用可逆变流器,实现-的象限运转。此时,能量向电源反馈而节能。变频器的结构控制电路二、控制电路给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路。如图1所示,控制电路由以下电路组成 :频率、电压的运算电路、主电路的电压、电流检测电路,电动机的速度检测电路,将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路 。在图1点划线内,无速度检测电路,为开环控制。在控制电路增加了速度检测电路,即图1增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。1、运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。2、电压、电流检测电路与主回路电位隔离检测电压、电流等。3、驱动电路为驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。4、I/0输入输出电路 图1为了变频器更好人机交互,变频器具有多种输入信号的输入(比如运行、多段速度运行等)信号,还有各种内部参数的输出(比如电流、频率、保护动作驱动等)信号。5、速度检测电路以装在异步电动轴机上的速度检测器(TG、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。6、保护电路检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,表1为保护功能一览。(1)逆变器保护瞬时过电流保护由于逆变电流负载侧短路等,流过逆变器器件的电流达到异常值(超过容许值)时,瞬时停止逆变器运转,切断电流。变流器的输出电流达到异常值,也同样停止逆变器运转。过载保护逆变器输出电流超过额定值,且持续流通达规定的时间以上,为了防止逆变器器件、电线等损坏要停止运转。恰当的保护需要反时限特性,采用热继电器或者电子热保护(使用电子电路)。过载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生。再生过电压保护采用逆变器是电动机快速减速时,由于再生功率直流电路电压将升高,有时超过容许值。可以采取停止逆变器运转或停止快速减速的方法,防止过电压。瞬时停电保护对于数毫秒以内的瞬时停电,控制电路工作正常。但瞬时停电如果达数10ms以上时,通常不仅控制电路误动作,主电路也不能供电,所以检出后使逆变器停止运转。接地过电流保护逆变器负载接地时,为了保护逆变器有时要有接地过电流保护功能。但为了确保人身安全,需要装设漏电断路器。冷却风机异常有冷却风机的装置,当风机异常时装置内温度将上升,因此采用风机热继电器或器件散热片温度传感器,检出异常后停止逆变器。在温度上升很小对运转无妨碍的场合,可以省略。(2)异步电机的保护过载保护过载检出装置与逆变器保护共用,但考虑低速运转的过热时,在异步电动机内埋入温度检出器,或者利用装在逆变器内的电子热保护来检出过热。动作频繁时,可以考虑减轻电动机负载、增加电动机及逆变器容量等。超额(超速)保护逆变器的输出频率或者异步电动机的速度超过规定值时,停止逆变器运转。(3)其它保护防止失速过电流急加速时,如果异步电动跟踪迟缓,则过电流保护电路动作,运转就不能继续进行(失速)。所以,在负载电流减小之前要进行控制,抑制频率上升或使频率下降。对于恒速运转中的过电流,有时也进行同样的控制。防止失速再生过电压减速时产生的再生能量使主电路直流电压上升,为了防止再生过电压电路保护动作,在直流电压下降之前要进行控制,抑制频率下降,防止不能运转(失速)。变频器的一般分类1、按变换的环节分类:可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器;交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。2、按直流电源性质分类:(1)电流型变频器电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。(2)电压型变频器电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。2.1.5变频器的控制方式的选用 一、变频器的控制方式低压通用变频器输出电压在38O65OV,输出功率在O75400kW,工作频率在O400Hz,它的主电路都采用交一直一交电路。其控制方式经历以下四代。1、第一代以U/fC,正弦脉宽调制(SPWM)控制方式。其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。2、第二代以电压空间矢量(磁通轨迹法),又称SVPWM控制方式。它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。以内切多边形逼近圆的方式而进行控制的。经实践使用后又有所改进:引人频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引人转矩的调节,所以系统性能没有得到根本改善。3、第三代以矢量控制(磁场定向法)又称VC控制。其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。4、第四代以直接转矩控制,又称DTC控制。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:(1)控制定子磁链引入定子磁链观测器,实现无速度传感器方式;(2)自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;(3)算出实际值对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;(4)实现BandBand控制一一按磁链和转矩的Band一Band控制产生PWM信号,对逆变器开关状态进行控制;(5)具有快速的转矩响应(2ms,很高的速度精度(2%,无PG反馈),高转矩精度(土3%);(6)具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出15O%200%转矩。二、控制方式的合理选用控制方式是决定变频器使用性能的关键所在。目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约5O多种。选用变频器时不要认为档次越高越好,其实只要按负载的特性,满足使用要求就可,以便做到量才使用、经济实惠。附表中参数供选用时参考。控制方式U/f=C控制电压空间矢量控制矢量控制直接转矩控制反馈装置不带PG带PG或PID调节器不要不带PG带PG或编码器 速比I1:401:601:1001:1001:10001:100起动转矩(在3Hz)150%150%150%150%零转速时为150%零转速时为150%200%静态速度精度/%(0.20.3)(0.20.3)0.20.20.020.2适用场合一般风机、泵类等较高精度调速,控制一般工业上的调速或控制所有调速或控制伺服拖动、高精传动、转矩控制负荷起动、起重负载转矩控制系统,恒转矩波动大负载第3章PLC的选择及作用3.1 PLC的介绍可编程控制器(Programmable Controller)是计算机家族中的一员,它是在继电器控制和计算机控制的基础上开发的产品,逐渐发展成以微处理器为核心,把自动化技术,计算机技术,通信技术融为一体的新型工业自动控制装置。早期的可编程控制器在功能上只能进行逻辑控制,因而称为称作可编程逻辑控制器(Programmable Logic Controller),简称PLC。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,在以前的基础上还可以进行算数运算,模拟量控制,用来取代继电器、执行逻辑、记时、计数等顺序控制功能,建立柔性的程控系统。因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC。 PLC的发展:在追求高质量高效率的信息时代生活中,网络的畅通无所不在。 伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分。我国在80年代初才开始使用PLC,目前从国外引进的PLC中使用较为普遍的有日本立石公司C系列,三菱公司F系列,松下电工FP1系列,美国GE公司GE系列和德国西门子公司S系列等。同时,国内也在消化和引进PLC技术的基础上,研制了PLC产品。目前国内使用的PLC主要还是靠引进和合资企业产品,但逐步实现国产化是国内发展的必然趋势。就第一台PLC诞生至今,PLC大致已经经历了四次更新换呆: 第一台PLC,多数用1位机开发,采用磁芯存储器存储,仅具有逻辑控制,定时,计数功能。第二台PLC,使用了8位微处理器及半导体存储器,其产品逐步系列化,功能也有所增强,已能实现数字运算,传送,比较等功能。第三台PLC,采用了高兴能微处理器及位片式CPU,工作速度大幅度提高,同时促使其多功能和联网方向发展,并具有较强的自诊断能力。 第四台PLC,不仅全面使用16位,32位微处理器作为CPU,内存容量也更大。可以直接用于一些规模较大的复杂控制系统;编程语言除了可使用传统的梯形图,流程图等外,还可使用高级语言;外设也更多样化。今后,PLC的发展将会朝以下几个方向进行: A. 方便灵活和小型化 B. 大容量和高功能 C.机电一体化 D.通讯和网络标准化 PLC的基本结构 PLC采用典型的计算机结构,由中央处理单元、存储器、输入/输出接口和其他一些电路组成。其图一为结构示意图。图二为逻辑结构图。3.1.1的发展阶段及发展方向全世界几乎80%以上不同品牌的PLC是不能通用的。一个品牌就要使用对应的编程器。有多少种品牌的PLC,就要有多少种编程器。(国内现在出了一些国产PLC,是仿制国外一些品牌PLC的,这些是可以使用被仿制品牌的编程器的。)手提编程器价格昂贵,而且编程使用指令操作(不能用梯形图),可读性不高,非常不方便。所以,做工程的人大多会使用电脑来对P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论