企业培训_汽轮机本体培训教材_第1页
企业培训_汽轮机本体培训教材_第2页
企业培训_汽轮机本体培训教材_第3页
企业培训_汽轮机本体培训教材_第4页
企业培训_汽轮机本体培训教材_第5页
已阅读5页,还剩80页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

超超临界1000MW等级汽轮机培训资料上海汽轮机有限公司努力了的才叫梦想,不努力的就是空想!如果你一直空想的话,无论看多少正能量语录,也赶不走满满的负能量!你还是原地踏步的你,一直在看别人进步。 培训资料目 录1. 概述2. 汽轮机本体结构特点2.1总体结构特点2.2高压缸的特点2.3主汽门调门2.4 补汽阀2.5中压汽轮机2.6再热主汽门2.7低压汽轮机2.8中低压连通管道2.9轴承座2.10盘车装置3辅助系统3.1轴承3.2.疏水系统3.3润滑油系统3.4轴封系统3.5低压缸喷水系统3.6高压缸通风4.热力性能和启动4.1热力循环4.2热力特性4.3启动5.控制保护系统1.概述本机组为具有超群的热力性能、高度可靠性、高效率、高稳定性、容易维护、检修所花时间少、运行灵活、快速启动及调峰能力。机组形式为四缸四排汽、中间再热机组。机组的设计蒸汽参数、功率、转速等均标在汽轮机的名牌上。汽轮机的内部结构详见汽轮机总剖面图。机组的高、中压缸均可采用厂内精装出厂,整体发运现场的先进的组装形式。机组的五个轴承座均为落地布置,不参与机组的滑销系统,除高压转子外,其余三根转子为单轴承支撑。机组长度短。推力轴承位于2轴承座内。汽轮机采用全周进汽加补汽阀的配汽方式,高、中压缸均为切向进汽。高、中压阀门均布置在汽缸两侧,阀门与汽缸直接连接,无导汽管。蒸汽通过高压阀门和单流的高压缸后,从高压缸下部的两个排汽口进入再热器。蒸汽通过再热器加热后,通过两只再热门进入双流的中压缸,由中压外缸顶部的中低压连通管进入两只双流的低压缸。在每只汽缸的下部都设有用于给水加热用的抽汽口。运行模式:定-滑-定(由补汽阀调频)汽轮机外型尺寸:29m X 10.4m X 7.75m汽轮机总重: 约1570 t 252 汽轮机本体结构特点本机组的总体型式为单轴四缸四排汽;所采用的积木块是西门子公司近期开发的三个最大功率可达到1100MW等级的HMN型积木块组合:一个单流圆筒型H30高压缸,一个双流M30中压缸,两个N30双流低压缸。“HMN”组合的功率范围为300MW至1100MW。根据排汽容积流量的大小(背压及功率)可选配1至3个低压缸。本机组技术先进、成熟、安全可靠;所有的最新技术近期均有成功的应用业绩,通过这些技术的最优组合,使该机型的总体性能达到了世界一流的先进水平。机组纵剖面图2.1总体结构特点中压部分高压部分低压部分发电机凝汽器进汽阀门汽轮发电机组三维立体视图本机组采用一只高压缸、一只中压缸和二只低压缸串联布置。汽轮机四根转子分别由五只径向轴承来支承,除高压转子由两个径向轴承支承外,其余三根转子,即中压转子和两根低压转子均只有一只径向轴承支承。这种支承方式不仅是结构比较紧凑,主要还在于减少基础变形对于轴承荷载和轴系对中的影响,使得汽机转子能平稳运行。这五个轴承分别位于五个轴承座内。整个高压缸静子部件和整个中压缸静子部件由它们外缸上的猫爪支承在汽缸前后的二个轴承座上。而低压部份静子部件的支撑方式较为独特,其外缸直接支撑于与它焊在一起的凝汽器颈部,与汽轮机基座没有任何关联,内缸等其它静子部件则通过低压内缸上伸出外缸的猫爪支撑于其前后的轴承座上,与低压外缸也不存在任何支撑关系,所以低压内、外缸在受热膨胀或变形时不会彼此造成影响。五只轴承座均浇灌在汽轮机基座上,在机组从冷态到运行时与基座不发生相对滑动。所有轴承座与汽缸猫爪之间的滑动支承面均采用灌有石墨的低摩擦合金滑块。它的优点是具有良好的摩擦性能,不需要另注油脂润滑,有利于机组膨胀畅顺。在低压端部汽封、中低压连通管低压进汽口以及低压内缸猫爪等低压内、外缸接合处均设有大量的波纹管进行弹性连接,以吸收这些连接处内、外缸间的热位移。在2号轴承座内装有径向推力联合轴承。因此,整个轴系是以此为死点向两头膨胀;而高压缸和中压缸的猫爪在2号轴承座处也是固定的,因此2号轴承座也是整个静子滑销系统的死点。高压缸受热后以2号轴承座为死点向机头方向膨胀。中压外缸与低压内缸间用推拉杆在猫爪处连接,汽缸受热后也会朝电机方向上顺推膨胀,因此,转子与静子部件在机组启停时其膨胀或收缩的方向能始终保持一致,这就确保了机组在各种工况下通流部分动静之间的差胀比较小,有利于机组快速启动。转子绝对膨胀相对膨胀静子绝对膨胀汽轮机膨胀示意图高、中压外缸两侧各布置有由一只个主汽门和一只调门组成的联合汽门,其结构及布置风格也是与众不同的,在阀门与汽缸之间没有蒸汽管道,主调门采用大型罩螺母与高压缸连接,再热调门采用法兰螺栓与中压缸连接,这种连接方式结构紧凑、损失小、附加推力小。由于本机组采用全周进汽滑压运行补汽阀的配置模式,在主汽门后设有一个补汽阀,该补汽阀相当于第三个主调阀,该阀门的功能和设置原理在热力系统章节中另有详述;该阀门吊装运转层平台以下高压缸的区域,通过两根导汽管将蒸汽从主汽门后导入补汽阀内,再通过另两根导汽管将蒸汽从补汽阀后导入高压缸的相应接口上。由于本机组采用独特的结构和合理的布置模式,使机组的可用率高,维护方便,机组的大修间隔长较长,与其他机型相比,其大修间隔要长一倍以上,可达到10万小时(约12年)。2.2高压缸的特点高压缸采用双层缸设计。外缸为独特的桶形设计,由垂直中分面分为左右两半缸。内缸为垂直纵向平中分面结构。各级静叶直接装在内缸上,转子采用无中心孔整锻转子,在进汽侧设有平衡活塞用于平衡转子的轴向推力。高压缸结构非常紧凑,在工厂经总装后整体发运到现场,现场直接吊装,不需要在现场装配。高压转子排汽缸高压内缸补汽阀进汽口猫爪猫爪高压转子高排主蒸汽进汽进汽缸抽汽口高压缸装配三维视图圆筒型高压缸在轴向上根据蒸汽温度区域分为进汽缸和排汽缸两段,以紧凑的轴向法兰连接,可承受更高的压力和温度,有极高的承压能力。无中分面的圆筒型高压缸有极高的承压能力,汽缸应力小。即使高压内缸有中分面设置于垂直方向将汽缸分为左右两半,采用高温螺栓进行连接,螺栓不需要承受内缸本身的重量,但其因此其螺栓应力也较小,安全可靠性好。目前用于该机型的高压缸积木块HI30,其设计压力达到30MPa。1、2轴承座 2、径向推力联合轴承 3、高压转子 4、高压内缸 5、第一级斜置静叶 6、高压静叶 7、高压动叶 8、高压外缸进汽段 9、高压进汽口 10、补汽阀进汽口 11、高压外缸排汽段 12、高压轴承13、1轴承座 14、液压盘车H型单流圆筒型高压缸补汽阀蒸汽从高压第无级后引入高压缸。同时,采用将高压第四级后540左右的蒸汽漏入内、外缸的夹层,再通过夹层漏入平衡活塞前的方法;而平衡活塞前的蒸汽一路经平衡活塞向后泄漏至与高排相通腔室,一路则经过前部汽封向前流动与第一级静叶后泄漏过来的蒸汽混合后经过内缸的内部流道接入高压第五级后补汽处。经过内部流道的这一布置,使第一级后泄漏过来的高温蒸汽只经过小直径的转子表面,同时大尺寸的外缸进汽端和转子平衡活塞表面的工作温度只有540左右,降低了结构的应力水平,延长其工作寿命。2.3主汽门调门机组设有两套主汽门调门组件,主汽门和主调门为一拖一形式,共用一个阀壳布置在机组的两侧。主调门通过大型螺母与汽缸直接连接无导汽管。阀门弹簧支架主汽阀连接大螺母高压缸油动机主调阀主汽门进汽口补汽进汽接口主汽门调门与汽缸连接方式主蒸汽通过主蒸汽进口进入主汽门和主调门,主调阀内部通过进汽插管和高压内缸缸相连,主蒸汽通过进汽插管直接进入高压内缸,不设常规机组的导汽管。阀壳与高压外缸通过大型螺母连接。 主汽门调门主汽门是一个内部带有预启阀的单阀座式提升阀。蒸汽经由主蒸汽进口进入装有永久滤网的阀壳内,阀门滤网采用环形波纹钢板缠绕形式,滤网的网孔直径相当小(仅1.6mm),刚性较好,滤网面积与阀门喉部面积比约为7:1,即使有部分堵塞也不影响机组的正常运行。主汽门打开时,阀杆带动预启阀先行开启,从而减少打开主汽门阀碟所需要的提升力,以使主汽门阀碟可以顺利打开。主汽门由独立的油动机开启,由弹簧力关闭,安全可靠性好。主调阀也为单阀座式提升阀,在阀碟上设有平衡孔以减小机组运行时打开调门所需的提升力。和主汽门相同,主调阀也由独立的油动机开启,由弹簧力关闭。主汽门内部结构主调门内部结构2.4 补汽阀机组在主汽门后调门前各引出一路进入补汽阀,补汽阀相当于主汽门后的第三个主调阀,该阀门一般在最佳运行经济工况点后开启,满足在该工况外机组能够到达更高的负荷,同时该阀门还具有调频功能;该阀门吊装运转层平台以下高压缸的区域,通过两根导汽管将蒸汽从主汽门后导入补汽阀内,再通过另两根导汽管将蒸汽从补汽阀后导入高压缸的相应接口上补汽阀的调节方式与主调阀相同。1、补汽阀油动机2、补汽阀出汽口3、补汽阀进汽口4、补汽阀支吊点2.5中压汽轮机中压缸采用双流程和双层缸设计,内外缸均在水平中分面上分为上、下两半,采用发兰螺栓进行连接。可以采用厂内总装精装出厂的先进技术。中压缸装配三维视图 中压缸纵剖面图各级静叶直接装于内缸上,蒸汽从中压中部通过进汽插管直接进入中压内缸,流经对称布置的双分流叶片通道至汽缸的两端,然后经内外缸夹层汇集到中压缸上半中部的中压排汽口,经中低压连通管流向低压缸。因此中压高温进汽仅局限于内缸的进汽部分。整个中压外缸处在小于300排汽温度中,压力也只有0.6MPa(a)左右,汽缸应力较小,安全可靠性好。由于通流部分采用双分流布置,转子推力基本能够左右平衡。中压缸也可在工厂经总装后整体发运到工地,不需要在现场重新装配。1、中压转子 2、中压外缸 3、中压静叶 4、中压静叶 5、中压动叶6、第一级斜置静叶 7、中压缸排汽口 8、中压缸进汽口2.6再热主汽门中压阀门和高压部分相同,中压缸也有两个再热主汽门与再热调门的组件,分别布置在中压缸两侧。每个组件包括一个再热主汽阀和一个再热调节阀,他们的阀壳组焊为一体。再热蒸汽通过再热蒸汽进口进入再热主汽门和再热调门,再热调阀通过再热进汽插管和中压缸相连,再热蒸汽通过进汽插管直接进入中压内缸。 再热调阀与中压缸间采用法兰螺栓连接,阀门采用非常简洁的弹性支架直接支撑在汽机基座,对汽缸附加作用力小,同时有利于大修时的拆装。再热主汽阀与主汽阀、再热调阀与主调阀在内部结构及调节控制方式基本相同。9调门1、再热蒸汽进口 2、中压缸 3、再热主门和调门组件 4、再热调门油动机 5、再热主门油动机 6、中压进汽插管 7、再热调门 8、再热主汽门 9、阀门支架再热主门内部结构再热调门内部结构2.7低压汽轮机41、低压转子 2、低压外缸上半 3、低压内缸上半 4、低压外缸 6、低压内缸下半 7、低压外缸下半低压缸为双流、双层缸结构。来自中压缸的蒸汽通过汽缸顶部的中低压连通管接口进入低压缸中部,再流经双分流低压通流叶片至两端排汽导流环,蒸汽经排汽导流环后汇入低压外缸底部进入凝汽器。内、外缸均由钢板拼焊而成,均在水平中分面分开成上下半,采用中分面法兰螺栓进行连接。低压外缸下半由二个端板、二个侧板和一个下半钢架组成。低压外缸采用现场拼焊,直接坐落于凝汽器上,外缸与轴承座、内缸和基础分离,不参与机组的滑销系统。外缸和内缸之间的相对膨胀通过在内缸猫爪处的汽缸补偿器、端部汽封处的轴封补偿器以及中低压连通管处的波纹管进行补偿。端部汽封轴封补偿器低压内缸横向固定装置低压内缸低压静叶持环低压汽轮机的各种波纹管补偿器低压内缸通过其前后各二个猫爪,搭在前后二个轴承座上,支撑整个内缸及其内部静子部件的重量,并以推拉装置与中压外缸相连,保障汽缸间的顺推膨胀,以保证动静间隙。在低压内缸下半底部两端的中间位置处各伸出一只横向销,插入从该区域从汽机基座上伸入的销槽内,用于限制低压内缸的横向移动。中压外缸与低压内缸的推拉装置推拉杆推拉杆中压外缸低压外缸低压内缸膨胀节猫爪低压内缸中部左右侧各装有一个低压静叶持环,低压缸的前几级静叶装入静叶持环中,末两级或末级叶片直接装于低压内缸两端。低压排汽导流环与低压内缸焊为一体,这样不仅增加了整个低压内缸的刚性,减少低压内缸的挠度,而且可简化安装工序,缩短安装周期。其缺点是和低压内缸猫爪一样,导致低压内缸运输尺寸过大,对一些运输受限制的地区,需要考虑结构上的调整。 低压内缸通过其前后各二个猫爪,搭在前后二个轴承座上,支撑整个内缸、持环及静叶的重量。并以推拉装置与中压外缸相连,以保证动静间隙低压内缸通过其前后各二个猫爪,搭在前后二个轴承座上,支撑整个内缸、持环及静叶的重量。并以推拉装置与中压外缸相连,以保证动静间隙。2.8中低压连通管道机组设有一只中低压连通管,连通管将中压与两只低压缸连接起来。中压缸排汽通过连通管进入两只低压内缸,通过双流的低压缸做功后向下进入凝汽器。连通管外缸内缸外缸和连通管的连接1231、中压缸排汽口 2、低压I进汽口 3、低压II进汽口连通管与低压缸进汽口连接中低压连通管管道内径为2000mm。2.9轴承座机组有五只轴承座,轴承座通过地脚螺栓与基础固定,不参与机组的滑销系统。汽缸通过猫爪搭在其前后轴承座上,轴承座与猫爪之间采用低摩擦系数耐磨的合金,该合金为自润滑形式,不需要加注润滑脂。五只轴承分别位于五只轴承座内,机组的死点为2轴承座,径向推力联合轴承位于该轴承座内。机组以2轴承座为死点向两头膨胀,中压外缸与低压内缸以及低压内缸与低压内缸之间以穿过轴承座的推拉杆相连接传递膨胀。 1、推拉杆 2、地脚螺栓 3、轴承座 4、润滑油进口、5、顶轴油管路 6、轴承 7、端部汽封 8、润滑油回油口推拉杆结构图1、低压内缸 2、自润滑板 3、轴承座 4、汽缸补偿器 5、低压外缸 6、推拉杆 7、补偿器 8、中压外缸(低压内缸)2.10盘车装置1、高压转子 2、与1轴承座连接 3、离合器 4、液压马达液压马达前轴承座高压转子本机组盘车设备安装于前轴承座前,采用液压马达这一独特的驱动方式进行驱动,马达由5个伸缩油缸及1根偏心轴组成,工作原理为:需要盘车时,顶轴油的电磁阀打开,借助于在伸缩油缸中的压力油柱,把压力传递给马达的输出偏心轴,使马达伸出轴通过中间传动轴带动转子转动,其安全可靠性及自动化程度均非常高。盘车工作油源来自顶轴油,压力约145Bar。盘车装置是自动啮合型的,能使汽轮发电机组转子从静止状态转动起来,盘车转速约为60转/分。盘车装置的配有超速离合器,能做到在汽轮机冲转达到一定转速后自动退出,并能在停机时自动投入。盘车装置与顶轴油系统、发电机密封油系统间设联锁。3辅助系统3.1轴承3.1.1 径向轴承 (#1轴承) 功能 径向轴承的功能是维持转子在相对于固定汽缸的中心位置。轴承的表面设计布置成大部分轴承和转子之间的油膜抑制来自转子的自由振动。结构组成径向轴承支撑转子,由上半和下半壳体(件1;4)、支撑垫块(件5)、轴承壳体(件10)和定位键组成。轴承壳体内侧设有巴氏合金,通过圆锥销和螺栓联结在一起。如图2所示。轴承金属测温元件采用热电偶(件13,14)。采用圆柱壳体来支撑轴承以保证和转子偏差曲线相配合。轴承壳体通过横向键(件7)来固定横向位置。竖直方向力通过轴承座的面(件11)传递到基础上。在极端不平衡时所产生的向上的力,通过键(件6)传递到轴承座上半,通过边上的地脚螺栓到基础上。水平方向力通过轴承盖底部平面的筋板传递到基础上。供油通过轴承一边的润滑油口直接给轴承供油,或在轴承上半部分通过圆周油管来供油。通过转子(件3)的旋转,将油从油瓤中挤出。离开轴承壳体后,通过油封环(件2)回到轴承座中。 #1轴承 1:轴承壳体上半 2:油封 3:转子 4:轴承壳体下半 5:支撑垫块 6:键 7:键 8:调整垫片 9:调整垫片 10:圆柱垫块 11:轴承座 12:顶轴油孔顶轴油为了防止在盘车装置运行时汽轮机转子摩擦,在盘车启动时减少扭矩,提供高压油来顶起转子。高压顶轴油通过顶轴油孔(件11)到轴承低部中心。轴承壳体拆卸在不抽转子的情况下,轴承壳体上、下半都可以拆卸。在轴封间隙的范围内,通过顶轴设备将转子稍微顶起。通过适当的设备,轴承壳体下半能绕转子旋转并拆卸。12: 测温元件图2 测温元件布置在运行中监视轴承金属温度,测温元件采用三线制热电阻。根据机组安装后实际投运的温度情况,在控制系统中设置轴承金属温度报警值。如果正常运行时所有汽轮机轴承金属温度都小于90,则报警值为90,调闸值为130;如果正常运行时汽轮机轴承金属温度都小于105,则报警值为105,调闸值为130 3.1.2.径向联合推力轴承(#2轴承) 功能径向联合推力轴承的功能是支撑转子和承受由轴系产生的而平衡活塞不能平衡的残余轴向推力。推力轴承所能承受轴向推力的大小和方向取决于汽轮机的负荷情况。整个汽轮机转子轴系须考虑热膨胀和轴承维护运行所需的轴向公差。结构和运行模式径向推力联合轴承由上、下半轴承壳体(见2;9),整体式油封,衬套(件5),推力瓦块(件4),球面垫块(件11),球面座(件13)和键。上、下半轴承壳体通过锥销和螺栓固定在一起。衬套表面覆盖巴氏合金。通过圆柱销(件20),推力轴承瓦块被倾斜地放置在轴承体的环行槽中,通过弹性元件(件18)变成柔性支撑(N-N剖面)。瓦块的工作面是巴氏合金。瓦块支撑在汽轮机转子的环行表面上。轴承的球面块和球面座设计成可调整的,在安装时,允许在轴向和径向调整以满足转子要求。轴承壳体通过边上的键(件8)来定位。竖直方向的力通过支撑垫块和轴承座底部的支撑块传递到基础上。在任何极端不平衡状态下所产生的向上的力,通过轴承座上部的键(件3)和地脚螺栓传递到基础上。轴断面的横向力和轴向力通过轴承体和键(14;15)传递到基础上。径向推力联合轴承纵向和横向截面1:轴承座 上半 6:转子 11:球面垫块2:轴承壳体上半 7:轴承座下半 12:调整垫片3:键 8:键 13:球面座4:推力瓦块 9:轴承壳体下半 a:顶轴油孔5:轴承衬套 10:调整垫片测温元件金属温度测量点布置于巴氏合金衬套的上部,轴承衬套的下部(见D-D剖面),在推力轴承的正、负瓦块上都布置有热电偶(件16;17)。供油通过轴承一边的润滑油口直接给轴承供油,或在轴承上半部分通过圆周油管来供油。通过在轴承衬套上钻孔,将部分油进入径向轴承的油瓤。通过轴承体的凹槽,大部分油直接供到环形槽,并与径向轴承的回油混合供给推力轴承工作面。通过轴承两端的油封润滑转子并最后回到轴承座的下部。 推力瓦块(截面)2:轴承壳体上半 18:挡油环4:推力瓦块 19:键9:轴承壳体下半 20:定位销顶轴油为防止盘车运行时转子和径向轴承干摩擦及盘车启动时减少启动扭矩,通过顶轴油口(B-B剖面a)在轴承下半壳体设置了两个凹槽(详见Y)。密封环(件21)放置与轴承衬套9(件5)与轴承壳体下半之间,防止油渗漏。3.1.3.径向轴承(#3、#4、#5轴承) 结构径向轴承的功能是支撑汽轮机转子。大体上说,径向轴承分成上、下半壳体(件2;6),球面座(件3)和垫块(件8)。轴承的工作面是巴氏合金面,滑动面是机械加工面。刮削是不合适也是不允许的。壳体都是用圆锥销和螺栓来固定联结在一起的。允许调整轴承壳体以保证与转子相匹配。球面垫块座(件3)和调整垫片(件8;9)通过螺栓紧固在轴承壳体上(件12)。测量轴承金属温度的热电偶(件10)布置见B-B剖面。供油润滑油通过轴承壳体内部水平结合点铣出的油道在径向供给转子。在巴氏合金的油室与转子之间形成油膜,并通过专门的回油通道回流到轴承座中(件5)图7 径向轴承部件1:巴氏合金 6:轴承壳体下半2:轴承壳体上半 7:轴承座上半3:球面垫块 8:调整垫片4:轴承座垫块 9:垫片5:轴承座下半轴承壳体拆卸在不抽转子的情况下,轴承壳体上、下半都可以拆卸。在轴封间隙的范围内,通过顶轴设备将转子稍微顶起。通过适当的设备,轴承壳体下半能绕转子旋转并拆卸。10:测温元件图8 测温元件(B-B剖面)图9 轴承座(俯视图)11:轴承座 12:调整垫块轴承数据汇总表:编号直径宽度(mm)轴瓦型式比压许用比压运行温度()1250180椭圆1.512.311052380300椭圆2.042.531053475475袋式2.903.201054560560袋式3.103.191055560425袋式1.962.43105推力外径630内径380可倾瓦1.9160(320)185(365)C(F)C(F)ISO 2592ASTM D 92倾点-6(21.2)C(F)ISO 3016ASTM D 97清洁度等级17/14(8级)-ISO 4406(NAS 1638)颜色2-DIN ISO 2049ASTM D 1500对铜的侵蚀作用2-100A3-DIN EN ISO 2160ASTM D 130对铁的侵蚀保护作用0-B-DIN 51 585ASTM D 665老化特性:2500小时后中和数的增加2.0mg KOH/gDIN 51-587ASTM D 943润滑油温度汽轮发电机在额定转速运行期间,借助油温控制阀使汽轮机和发电机轴承的入口温度保持大约50。3.4轴封系统功能轴封蒸汽用来密封穿过汽缸的轴。各汽封采用同一汽源供汽(280-320(转子温度不大于300时为240,0.3-0.8Mpa),机组达到约70负荷时汽封能够自密封,不再需要外部供汽,高、中压汽封漏气直接供向低压汽封。运行及结构组成供汽调节阀(1)和溢流调节阀(2)在轴封蒸汽母管中维持一定的压力(35mbar)。在正常运行期间,从高压缸来的过量的汽封蒸汽经母管向低压缸汽封供汽。从进汽阀门(3)来的门杆漏汽输送到排放管线。为了防止轴封蒸汽溢出至大气,从轴封蒸汽外侧的泄漏蒸汽被抽出并输送到汽封冷却器(4)。凝结的泄漏蒸汽排至主凝汽器。夹带的空气由风机(5)从汽封冷却器抽出并排放至大气。 轴封系统A 高压汽轮机 2 溢流调节阀B 中压汽轮机 3 进汽阀门C 低压汽轮机 4 汽封冷却器1 供汽调节阀 5 风机汽封冷却器 汽封冷却器1 循环水入口 9 循环水侧排放接口2 水室 10 管板3 循环水侧排气接口 11 冷却器管子4 空气和不凝结蒸汽出口 12 挡板5 冷却器壳体 13 泄漏蒸汽凝结水出口6 泄漏蒸汽/空气混合气体入口 14 循环水侧排放接口7 循环水侧排气接口 15 人孔8 循环水出口 16 导向板功能该系列汽封冷却器用在冷凝式汽轮机设备中。它们的功能是收集从汽轮机轴封系统泄漏的蒸汽/空气混合气体并凝结泄漏蒸汽。结构特征汽封冷却器设计成表面式凝结。没有循环水进入与凝结水接触。管子布置在汽封冷却器的汽侧空间,由带有光滑表面的直管组成。循环水进出的管子端部胀接到管板中。管板焊接到冷却器壳体内将汽侧空间与循环水进出口端隔离。换热管采用不锈钢材料。运行轴封的泄漏蒸汽室维持轻微的真空防止泄漏蒸汽溢出到大气。这样,从大气来的空气经末级轴封流到泄漏蒸汽室。系统内轻微的真空由连接到汽封冷却器上的风机维持。从泄漏蒸汽室来的泄漏蒸汽和空气的混合气体经过母管进入汽封冷却器的汽侧空间。混合气体中夹带的空气削弱换热系数。因此,泄漏蒸汽全部凝结是不经济的。作为设计规范,泄漏蒸汽的非凝结部分总计大约30%是容许的。蒸汽空间的挡板使整个流动发生偏移并使流速增加。空气对换热系数的影响因而降低。泄漏蒸汽在冷却器管子的表面凝结。泄漏蒸汽疏水经排放管线被送回汽/水混合U型管进入汽轮机凝汽器。泄漏蒸汽的未凝结部分和夹带的空气由风机从汽侧空间抽出。在凝结过程中释放的潜热被传递到从冷却器管子中流动的循环水中。辅助冷却水用作散热剂。3.5低压缸喷水系统功能及运行冷却低压缸排汽,通过低压缸排汽温度保护系统防止低压缸出现不允许的高温。当温度的设定值(低于允许极限)被超过时,喷水装置打开,通过布置在低压缸尾部的雾化喷嘴将冷却水喷入蒸汽。同时发出“低压缸排汽温度高”的报警信号。汽轮机停机后盘车转速下降到设定的极限以下或加载运行达到设定输出时,关闭低压缸喷水装置。组成除了管道、节流阀和监视设备外,以下部件也是必须的: 低压缸喷水系统减压阀 减压阀的主要作用是降低凝结水的压力以达到低压缸喷水系统的要求。 喷水电磁阀 电磁阀的开启取决于低压缸叶片区(电机端)后的测量温度和每一个低压缸上部(电机端)的缸壁温度。当低压缸喷水不再需要时关闭,例如,在加载负荷或盘车后。 低压缸喷水系统前的过滤器 过滤器的作用是除去凝结水中的杂物,保证雾化喷嘴正常工作。 3.6高压缸通风作用高压缸通风的作用是防止高压缸叶片区域出现不允许的温升。在高压缸叶片区域不允许的温升和非常高的温度产生是由于在额定转速附近高压缸区域的流量不足和再热压力高。在电厂运行时,上述情况可能发生在: 在汽轮机跳闸期间,尤其在超速保护系统激活时 逆功率保护设备故障 在再热阀开启时,主调门或主蒸汽主汽门的不正常关闭 主蒸汽压力和再热蒸汽压力比下降到规定极限以下 汽轮机跳闸后机组滑行时,冷再热管道上的逆止阀泄漏或因故障没有关闭 调整装置发生故障组成部件除了管道,以下部件是必须的:高压缸通风阀 高压缸通风阀是配有气动执行机构的减压阀。它通过弹簧打开、压缩空气关闭。空气来自于安全压缩空气系统。高压缸通风阀在汽轮机跳闸开始时打开,当速度下降到一定的标准以下即高压缸叶片不会再产生鼓风的危险时关闭。在汽轮发电机以低的稳定速度启动的初始阶段,通过高压缸叶片区域的压力差比额定转速下计算得到的最小允许压力差还低,此时,高压缸通风阀打开。在启动时,为了避免高压缸通风阀不必要的打开,打开的启动信号不被释放,直到汽轮机设定速度达到为止。当高压缸通风阀关闭时,选择的速度很低以便高压缸叶片鼓风的危险大大的降低。电磁阀 电磁阀1 电磁阀2 电磁阀按2取1的方式连接,在失电压时关闭,用来降低高压缸通风阀执行机构内的空气压力,从而打开阀门。 4.热力性能和启动4.1热力循环超超临界1000MW汽轮机为一次中间再热循环,四缸四排汽、单轴凝汽式汽轮机。从锅炉来的主蒸汽经过单流圆筒形高压缸两侧的主汽门和主调门进入高压缸第一级斜置静叶级,在第五级后有从主汽门和主调门之间抽出的新蒸汽流经补汽阀进入,并混合一起流过下游反动级组做功(当主调门全开时,若想进一步增加功率参与调频,则开启补汽阀),在高压第12级后有回热抽汽口接#1高加。高压缸排汽管道接#2高加和再热冷段。从锅炉再热器出口再热蒸汽经过双流中压缸两侧的中联门进入中压缸第一级斜置静叶级,然后进入下游反动级组做功。中压缸上接有供#3高加,除氧器,给水泵汽轮机,#5低加的抽汽。中压缸排汽经过一根连通管进入两个双流低压缸。低压缸上接有供#6、#7、#8低加的回热抽汽;低压排汽进入双背压凝汽器。回热系统为三级高压加热器(内设蒸汽冷却段和疏水冷却段),一级除氧器和四级低压加热器组成八级回热系统;5低压加热器疏水自流至6低压加热器,6低压加热器设有疏水泵,#7及#8低压加热器的疏水分别进入位于#8低加与汽封冷却器之间的疏水冷却器;锅炉给水泵由给水泵汽轮机驱动。4.2热力特性汽轮机热耗率、缸效率、各缸功率分配等热力特性。4.2.1热耗率计算其中:Wms主蒸汽流量 (kg/s)hms主蒸汽比焓 (kJ/kg)Whr再热热段蒸汽流量 (kg/s)hhr再热热段蒸汽比焓 (kJ/kg)Wcr再热冷段蒸汽流量(kg/s)Hcr再热冷段蒸汽比焓(kJ/kg)Wfw最终给水流量 (kg/s)hfw最终给水比焓(kJ/kg)Wsh过热器喷水流量 (kg/s) (设计值取0)Wrh再热器喷水流量(kg/s) (设计值取0)hsh过热器喷水比焓 (kJ/kg)hrh再热器喷水比焓 (kJ/kg)HR热耗率 (kJ/kWh)Pe发电机出线端功率(扣除静态励磁耗功和电动主油泵耗功 ) (kW)4.2.2缸效率计算按效率公式定义:实际焓降与理想焓降的百

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论