智能采光实时追日的电能管理系统_第1页
智能采光实时追日的电能管理系统_第2页
智能采光实时追日的电能管理系统_第3页
智能采光实时追日的电能管理系统_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

智能采光实时追日的电能管理系统2010-11-2417:26:35

王劲陈林

来源:单片机与嵌入式系统应用关键字:太阳能智能采光FPGA电能管理AFS600引言

太阳能是资源丰富、无污染的能源替代品,怎样提高对其的利用率逐渐成为各国的研究焦点。太阳能的利用存在以下问题:首先,太阳能虽然资源丰富,但能量分散,集中在某点的能量较少,同时太阳能的方向性决定了较长时间内不可能在固定方向一直获取较大的能量;第二,太阳能受环境条件的制约,只有在白天太阳光线较好的情况下,才能获得稳定的太阳能;第三,太阳能电池板的转换效率不高,目前世界上太阳能电池板的转换效率最高也只有30%,而国内使用的转换效率大都在20%左右。本课题主要针对太阳能利用率低这一问题,利用太阳定位算法以及光敏电阻传感器反应法,并通过Fusion系列单片机模数混合的FPGA协调控制电机,驱动太阳能电池板实时追日,以提高太阳能的利用率。后续通过FPGA的PWM模块对蓄电池进行智能充电和电源管理,最后在开发板的LCD单元中显示天气和电源状态信息,并同时通过串口及时反应相关信息到PC机上。1系统设计1.1系统整体设计

本系统主要由中央处理单元、智能采光、电源管理和上位机软件4个局部组成。系统主要实现了太阳能利用率的提高,太阳能的转换和存储,UPS功能。本设计还提供了对系统的检测和管理。

如图1所示,系统包括控制处理单元、电源管理单元、供电和输电单元(包括太阳能电池板、蓄电池、市电、电能输出接口)、接口单元、LCD显示单元、按键、指示和报警单元、步进电机驱动单元和采光单元。利用FPGAAFS600作为控制处理单元,主要通过VerilogHDL硬件逻辑和cote51软核实现数据采集、处理、电机的驱动控制以及电源管理单元的控制。采光单元和步进电机驱动单元主要实现采集光强数据以及控制机械传动改变太阳能电池板的方位的功能。电源管理单元与供电和输电单元实现蓄电池充/供电切换、市电供电和蓄电池供电切换、太阳能充/供电切换、电能变换输出。1.2智能采光的设计

系统提供两种方式对太阳方位进行跟踪:光敏电阻阵列自适应控制算法和定位跟踪算法。其中以光敏电阻阵列自适应控制算法为核心,以定位跟踪算法为辅助校正。这两种方式有机结合,以增强系统的鲁棒性和抗干扰性,使其能更好地适合各种环境。1.2.1光敏电阻阵列

光敏电阻是电阻性传感器,在所受到的光强度发生变化时,其电阻值相应变化,可将光信号转换为电信号。

(1)阵列布局设计

如图2右侧所示,P1~P8为光敏电阻,分别布置在圆筒内外东、南、西、北四个方位。P1~P4裸露在外,东西对称的一对(P1,P3)用于粗略检测太阳方位角θA;另一对(P2,P4)用于粗略检测太阳入射角θZ;P5~P8在圆筒内部,东西对称的(P5,P7)用于精确检测太阳方位角θA;另一对(P6,P8)用于精确检测太阳入射角θZ。采光板设置了一个保护圆筒,它可以较大程度屏蔽外界环境的散射光及其他干扰光线,使得外界的干扰光源对跟踪效果的影响降到较低,提高跟踪精度。

(2)跟踪原理

布置在外部的4个光敏电阻P1~P4能反映出当前天气情况,例如阴天、晴天或者黑夜,从而可以决定是否需要调整太阳能电池板;布置在内部的4个光敏电阻P5~P8用于精细调整电池板的方位。

当太阳光偏离垂直方向一个较小的角度时,由于受环境散射光的影响,外部光敏电阻不会反映出太阳光线的变化;而内部光敏电阻受到了圆筒对环境散射光的屏蔽保护,它们接收的照度会出现差值,即偏离信号。当太阳光偏离了一个较大的角度时(阴雨天,乌云过后或者日夜交替),筒内的光敏电阻可能接收不到太阳光,筒外的光敏电阻就能反映出照度差值。控制单元通过对信号再进行判断和处理,控制太阳光接收装置角度的调整,直到太阳能电池板对准太阳。详细的自适应跟踪流程见2.2节。

(3)设计参数的选取

粗略认为太阳在24h内转过360°,本系统设计指标为每半小时跟踪1次,所以跟踪的灵敏度为7.5°,即当太阳角度偏转7.5°(θ=7.5°)的时候,光敏电阻P5被遮挡,而P7能被光线照射。此时采光板就要进行调整,以跟踪太阳的方位。

根据实物的布局要求,设定圆桶的直径D=5cm,S=O.5cm。因此,得到内部传感器之间距离为L=(5-2×O.5)=4cm。上述的参数选定以后,根据H=S/tan(θ),即H=S/tan(27c×7.5/360),把S=O.5cm代入,最后得到H=3.79cm。实际中考虑到光线的散射和干扰,选取圆桶高度为6cm。1.2.2定位跟踪算法

因为地球自转一周为24小时,可以粗略认为太阳每小时自东向西偏移15°(360°/24),设时角为ω,磁偏角(赤纬角)为э,太阳入射角(天顶角)为θZ,太阳方位角为θA,φ为当地纬度。经计算得到:

根据公式(1)、(2),考虑到南京经度为e118.77,纬度为n32.O,海拔为50m以下,再参考大数估计算法和相关的校正参数,在Matlab中编程计算出太阳方位角和高度角。由于此计算复杂庞大,会大量消耗FPGA的资源,不利于在FPGA的51软核下运行。考虑到本系统只针对南京地区,地形上忽略海拔和纬度的变化,时间上忽略时区和分钟的变化,在KeilC中重新精简程序,并把前后算法所得数据以及实际测量数据进行比照描绘曲线,如图3所示。

图3为根据2008年2月19号8:25~16:25每隔1小时南京太阳天顶角θZ和方位角θA以及实际测量的相应值而描绘得出。其中左图表示太阳方位角(θA)随时间变化自东向西偏转的轨迹;右图表示太阳高度角(90-θZ)随时间变化的轨迹。通过比照,证明经过KeilC的简化,并未带来明显的轨迹偏差,而且定位算法所得到的轨迹与实际测量轨迹根本吻合。这样便使系统通过自行计算太阳方位来实现追日成为可能。图中曲线还说明对于太阳方位角和高度角,计算值整体比测量值大,这主要是由于大气对太阳光折射以及测量的误差而造成的,在实际调试中可以做出一定的修正,以改善追日效果。2系统流程设计与仿真测试2.1系统流程设计

本系统采用前后台系统。主程序是一个无限循环,循环中通过调用相应的函数完成相应的操作,而对于与时间关系很强的关键操作通过中断处理完成。主程序软件流程如图4所示。

利用该FPGA的core51核作为控制处理单元的核心,通过所提供的带有模拟功能的AD模块对多路AD采样的数据进行处理和分析;由core51核配置,门驱动核输出,控制电机驱动的脉冲信号,实现对系统采光的机械驱动,从而调整太阳能电池板的方位。由于太阳光的变化是比拟缓慢的,所以影响本系统数据采集精度的主要因数是AD自身转换的误差以及瞬时强光干扰。系统通过51核用软件的方法对AD输入的数据进行平滑滤波。

该FPGA还为用户提供了可编程的脉宽调制(PWM)核,即可以通过软件的方式改变输出脉冲的周期和占空比。其中PWM模块提供了PWM_addr、PWM_data输入信号,用于修改PWM波形的周期和占空比。通过core51核的配置,PWM核输出PWM控制信号,实现对蓄电池充电的控制。最后通过LCD实时显示天气和蓄电池状态信息,并通过串口反应到PC。2.2自适应的采光定位流程设计

为了实现的方便,本系统东西方向上对太阳跟踪的详细流程如图5所示(南北方向的跟踪原理是一样的)。系统先通过AD采集到外部4个以及内部东西方向的2个光敏电阻电压,外部4路与所设门限比拟,判断当前天气情况。如果连续3次采样值低于黑夜的门限时,那么认为是黑夜,系统将停止工作。如果判为阴天,那么系统控制太阳能电池板,让其方位保持不变。如果为晴天,那么按照所采到的内部两路光敏电阻电压差值进行判别,当差值大于所设门限时、那么认为电池板方位需要进行调整。调整原那么为:假设东边电压值大于西边,那么电池板向东边转动1.8°;反之,向西边转动1.8°。调整以后再返回到数据采集,重复上述过程。系统对于太阳方位角度的计算,可以作为一种备用和补充校正方案,即当光敏电阻损坏或者向光采光电路出现故障时,所采到的数据会出现异常(例如长时间的为0或者电压过高),可以通过上位机发命令,用定位算法所得结果调整太阳能电池板的方位。

在不同的环境下反复测试并改善遮光效果,得到内电阻采样电压再判别晴天、阴天和黑夜的门限分别为6.1V、5.8V和0.1V(采用6.2V电源供电);在太阳光偏离一定角度时,内电阻因遮光筒遮光而产生的电压差值在1V左右;在白天由于突然而来的强光而产生的外部电阻采样电压波动在0.2V左右。通过改变内电阻采样电压差值门限发现,门限电压过低将使得电机转动过于灵敏,浪费电能;门限电压过高,将导致不能实时追日。最终设门限为0.8V,到达最正确效果。2.3AD的仿真

由于AFS600有16路12位的AD,因此用5位表示通道号,用12位表示对应的数据。在设计AD数据与core51的数据交换中,采用分3字节的传输方式把17位数据分高、中、低3个字节分别传给core51,测试鼓励与仿真结果,如图6所示。

av_0为通道1,r_clk为core51的读命令端口,在一次数据有效(DATAVALID产生一个脉冲)分别读取3个字节的数据。先把十六进制的采样数据转换成十进制,除以4095再乘以8,([D(0x9c4)/4095]×8),计算得到4.88V,而实际值为5V,误差为2.4%。av_1为通道4,同理得到转换结果为2.91V,实际值为3V,误差为3%。2.4上位机软件

上位机软件共包括两个模块:显示模块,负责刷新界面上的状态、数据等;通信模块,与MCU进行通信,并且将通信的结果放入上位机内存,调用显示模块刷新界面。上位机软件通过串口与MCU连接后,假设没有传递经纬度时间信息的命令,那么每隔3s上位机向单片机请求1次数据;假设有传递经纬度时间信息的命令,那么优先发送该命令。任何命令发送给MCU以后,如果1s内没有收到MCU的回应,那么判断已经断开了连接。结语

本系统的设计和调试虽只是在实验阶段,但根本能实现预定功能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论