长时储能:示范项目总结-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第1页
长时储能:示范项目总结-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第2页
长时储能:示范项目总结-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第3页
长时储能:示范项目总结-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第4页
长时储能:示范项目总结-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Long-DurationEnergyStorage:EmergingPilotProject

Summaries

SI:EPRIInsight

in

f

www.epri.com

©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

Introduction

Purpose:

ThisreportsummarizesrecentpilotprojectsofLong-DurationEnergyStorage(LDES)technologies,specificallytechnologiesdevelopedbyCMBlu,EnergyDome,StorworksPower(Storworks),andRedoxBlox.1Itaimstoprovidehighlightsonthetechnologicalprocesses,performanceandcostmetrics,andpotentialviabilityasdemonstratedthroughfieldworkoftheseemergingenergystoragesolutions.Byexaminingthesepilotprojects,thereportprovidesinsightsintounderstandinghowthesetechnologiesfunctionandhowtheymayfitintoperspectiveportfoliostoenhancegridstabilityandvariablerenewableenergyutilization.Pleasenotethattheprojectionsandevaluationswithinthisreportareprimarilybasedonforward-lookingstatementsfromthemanufacturersoftheLDEStechnologiesandhavenotbeenindependentlyverifiedbyEPRI,exceptwhereexplicitlystated.

Relevance:

Insightsfromtheseenergystoragepilotprojectsofferhigh-levelqualitativeandquantitativeinformationforutilities.Theseinsights

includesummariesofperformanceandcostdata,whichareimportantforevaluatingLDESsystems.2,3Additionally,thereporthighlightsactivitiesandfindingsfromthepilottesting,providingabetterunderstandingofthestatusandmaturityofthesetechnologiesandtheirusecases.Byunderstandingtheperformance,costs,andmaturityofthesepilotprojects,utilitiescanmakemoreinformeddecisions

aboutthepotentialbenefitsofLDEStechnologiesfortheirenergyportfolio.4Moredetailsontheseandotherenergystorage

technologiescanbeobtainedthroughparticipationinEPRI'sProgram94“EnergyStorageandDistributedGeneration”andProgram221“BulkEnergyStorage.”

1EnergyStorageTechnologyDatabase(ESTD)v1.0.EPRI,PaloAlto,CA:2023.

2EPRIInsights:CurrentEvents,IndustryForecasts,andR&DtoInformEnergyStrategy.EPRI,PaloAlto,CA:2022.

3002025959

.

3Long-DurationEnergyStorage:PotentialUseCasesandTechnology.EPRI,PaloAlto,CA:2021.

3002019019.

4Long-DurationEnergyStorageBenefits.EPRI,PaloAlto,CA:2021.

3002021099

.

2©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

EmergingLDESTechnologiesOverview

Electrochemical:Usesreversiblechemicalreactionstogenerateelectricity,withlithiumionbatteriesbeingtheprincipaltechnology.Newelectrochemicalbatteriesrepresentapromisingfrontierinlong-durationenergystorage.Thesetechnologiesuselow-costrawmaterialssuchaszincandironintheactivematerialsthatstoreenergy.Thesebatteriesarescalable,withprojectedlowmarginal

costofenergy,makingthemsuitableforapplicationsrequiredsustainedenergydelivery,suchasrenewableintegrationandbackuppower.

Mechanical:Harnesseskineticorpotentialenergytostoreandreleaseenergy.Potentialenergysystems,suchaspumpedhydro

storage,usegravityandinvolveliftingmasswhenchargingandloweringittospinageneratortocreatepowerwhendischarging.

Kineticenergysystems,suchascompressedairenergystorage(CAES),generallycompressaworkingfluidwhencharging,storingitatpressure,thenexpandingittodriveaturbinewhendischarging.Awidearrayofemergingmechanicalenergystoragesystemsarebeingdeveloped,whichpromiselowercostandhigherround-tripefficiency(RTE),alongwitheasiersiting.

Thermal:Storesandreleasesenergyintheformofheat.Heatcaneitherbestoredsensiblyusingmediasuchasconcrete,gravel,

sand,orsaltorusingaphase-changematerial,whichprovidesadditionalheatfromphasetransitions.Whencharging,themediumis

eitherheatedbyahotfluidorelectrically,andwhendischarging,aworkingfluidisheatedtoeitherdriveapowercycle,orto

provideheatdirectlytoaprocess.Thermalenergystorage(TES)hasthepotentialtobethelowestcostLDESsystem,balancedbylowerefficiencies.

Chemical:Involvescreatingalow-carbonfuelorperformingareversiblethermochemicalreactionthatcangenerateheat.Hydrogen

istheprimarylow-carbonfuelcandidateandcanbegeneratedusingelectrolysis,orchemicallythroughreformingafossilfuel,

coupledwithcarboncaptureandstorage.Othercandidatelow-carbonfuelsincludeammoniaandbio-fuels.Oncecreated,thesefuelscanbestoredforuptoseasonalperiodsandburnedinconventionalpowergenerators.Thermochemicalsystemsusea

compoundthatcombinedwithairorwatergeneratesheattodriveapowercycle,thatisthenreformedtorepeattheprocess.

3©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

CMBlu(Electrochemical)

CMBlu'sOrganicSolidFlowbatteryisaredox(reduction-oxidation)flowbattery(RFB)containingelectrolytesinthesolidandliquidform.

Nearlyalltheenergyisstoredinacarbon-basedsolid.Theliquid

electrolyteactsasashuttle,movingchargedionsbetweenpositiveandnegativesidesthroughthebatterystacktochargeanddischarge.Theseparatetanksandstacksmakeitpossibletoscalepowerandcapacityindependently.

TechnologyBenefits

LongLifetime:Theseparationofelectrolytesintankseliminatessomemechanismsofcapacitydegradation.Thetechnologyis

projectedtohavea20-yearprojectlife,capableofover20,000cycles,withminimallossofcapacityduetocycling.

CostEffective:Abundantcarbon-basedmoleculesforthe

electrolytehavethepotentialtobelowcostwhenmanufacturedatscale.Thisincombinationwiththelonglifetimecanmakethetechnologycostcompetitiveatscale.

Figure1.SchematicoftheOrganicSolidFlowBattery

Figure1showstheoperationofCMBlu'sSolidFlowbattery.Twoexternaltankscontainingdifferentelectrolytes,onepositively

charged,andonenegativelycharged,areconnectedtothestackviapumpsthatdelivertheelectrolytestothepowermodule.

Theyarepreventedfrommixingbyathinmembraneandpass-overporouselectrodestocauseeitherachargingordischarging.

Tocharge,oxidationoccursattheanodecausingalossin

electrons,whichflowinthepowermoduleandtothecathode.Theprocessisreversedtodischarge,wheretheanode

experiencesreductionandthecathodeexperiencesoxidation.

4©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

CMBlu(Electrochemical)

Process

TheOrganicSolidFlowbatteryismadeupoftwoexternaltanks,abatterystackandapowermoduleconnectingthebatterytothegrid.Theexternaltanks

containeitheranolyteoracatholyte(positivelyornegativelycharged

electrolyterespectively).Eachoftheelectrolytesarecomposedofanactive

solidandliquidmaterialofmatchingpotentials.Thebatterystackismadeupoffourcomponentsinarepeatingorder.Theelectrodesfacilitatetheredox

reaction.Themembraneisaninsulatorthatselectivelyallowsionmigrationbutpreventsthedifferentelectrolytesfrommixing.Currentcollectorsfacilitatetheflowofelectricchargeandconnectthestacktothegrid.Theendplatesprovidemechanicalsupportandelectricalinterfacestothepowerconversionsystem.

Thebatteryoutputisdependentonthematerialandsurfaceareaofelectrodes,thestacksize,andthekineticsoftheredoxprocess.

Pilot

CMBluiscollaboratingwithWECEnergyGroupandEPRItoinstalla1–2MWhpilotprojectatValleyPowerPlantinMilwaukee,WItotesttheperformanceofthebatterysystem,includingdischargedurationsoffivetotenhours.5Initial

testingofasingleDCmoduleprototypewassuccessfulatthepowerplantin

December2023withtestingon-siteinitializationofthemodule,severalchargeanddischargeratesandprovidingcriticallogisticalexperiencewithsea,rail,

andtrucktransport.Aspartofthepilotproject,WEC,EPRI,andCMBlu

conductedadetailedhazardmitigationanalysis(HMA)ofthebatterymodule,focusingonpotentialhazardstopersonnel.TheHMAusedtheEnergyStorageIntegrationCouncilFlowBatteryHMAGuideandprovidedinputtopilottestplansandsafetychecklists.

5“WECEnergyGroupAnnouncesProjecttoDemonstrateLong-durationOrganicFlowBatteryStorage,”

February2,2023.

/news-releases/wec-energy-group-announces-project-to-

demonstrate-long-duration-organic-flow-battery-storage-301737840.html

.

Figure2.ModularBattery(usedwithpermissionfromCMBlu)

CMBlu’sOrganicSolidFlowbatterymoduleisbeingdesignedtoenablescalability.Figure2showshowthemodulescanbe

stackedtoincreasethesystem-levelenergydensity.Eachmodulehasatargetedfootprintof21.5–26.9ft2(2–2.5m2),depending

onduration,anda50MW,250MWhsystemhasaprojectedfootprintof33,906ft2(3150m2)forthebatteryportion.

5©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

EnergyDome(Mechanical)

EnergyDomehasdevelopedaCO2BatterysystemforLDES,utilizingcarbon

dioxideasthestoragemedium.Thissystem,whichoperatessimilarlytoCAESbutusesCO2storedabove-groundinsteadofairstoredbelow-ground.Key

featuresincludeefficientheatcaptureduringCO2compressionandaflexible,above-groundCO2gasdome,allowingfordiversesitingpossibilities.Thepilotproject,a2.5MWe/4MWhegrid-connectedunit,hassuccessfully

demonstratedthetechnology'sviabilityandwascompletedintwoyearsdespiteglobalchallenges.EnergyDomeplansalarger-scale20MWe,200MWheplantbylate2024.Thetechnologyistargetedforutilitiesand

industries,includingremoteminingoperations.

TechnologyBenefits

EnergyEfficient:EnergyDome'sCO2Battery,leveragingcommercially

availablecomponents,targetsan18-monthdevelopmentcycleandhasa

RTEof75–80%with100%depthofdischarge.Designedforalifespan

exceeding30years,itoperateswithoutcapacityorpowerdegradation.Thesystem'senergydensityis1.9kWh/ft³(67kWh/m³),surpassing

conventionalCAESsystems.A200MWhinstallationrequiresa10–12-acre(4–4.9hectares)footprintor17–20MWhe/acre(42–49.4MWhe/hectare).

CostEffective:Thecapitalcostsareestimatedat$150–220/kWh,withthelevelizedcostofstorageprojectedunder$100/MWhforearlyprojects,withthepotentialtoreduceto$50–60/MWh.Challengesincludesitingdueto

visualimpactofthedome.Thedomeisaninflatablestructurethatcanbeeasilyremovedattheendoflifeoftheproject.TheCO2Batterydoesnothaveanymajorenvironmentalimpactsasitonlyusessteel,water,andCO2initsfunctioning.

Figure3.ChargingEnergyDome'sCO2Battery

InFigure3,theCO2Battery'schargingprocessinvolvesamulti-stagecompressorpoweredbyanelectricmotor,compressingCO2tomediumpressure.Thisprocessgeneratesheat,whichisstoredintwotypesofTESsystems:aprimarypressurizedpackedparticle-bedsystemfor

directheattransfer,andasecondarytubularheatexchangersystemthatcoolstheCO2toaliquid/densephaseforstorageinabove-groundpressurevessels.

Figure4.DischargingEnergyDome'sCO2Battery

InFigure4,theCO2Battery'sdischargingprocessinvolvesreversingthechargingcycle.High-

pressureliquid/dense-phaseCO2isvaporizedandheatedbypassingthroughawater-tube

heatexchanger,servingasanevaporator,andthenthroughaTESpackedparticlebed.ThehotgaseousCO2expandsthroughaturbineconnectedtoagenerator,supplyingelectricitytothegrid.Afterexpansion,theCO2iscooledtoambienttemperatureforstorageinthedome's

bladder.Thissystemisengineeredfordailyuseovera30+yearlifespanwithoutdegradation.

6©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

EnergyDome(Mechanical)

Process

EnergyDome'sCO2BatterysystemutilizesCO2'suniquepropertyof

transitioningtoaliquidphaseatambienttemperatureundermoderatepressure.ThestorageprocesscompressesatmosphericCO2tomediumpressure,efficientlycapturingandstoringtheheatgeneratedduring

compressionintwoTESsystems.Whenelectricityisneeded,thestoredCO2

isreheatedandexpandedthroughaturbinetogeneratepower.The

system'sarchitectureallowsforconsistentoperationover30yearswith

dailycyclingandcanaccommodatecharge/dischargecyclesrangingfrom4to24hours.TohousetherequiredsubstantialquantitiesofCO2,adome

storagestructureisneeded,which,despiteitslargefootprint,remainscost-

effectiveduetotheuseofeconomicalmaterialsandminimalisticsitepreparationrequirements.

Pilot

TheCO2Batterysystem'sprojectedRTEof75–80%hingesonthe

performanceoftheTESmodulesandtheefficiencyofthecompressorsand

turbines.AchievingthisRTEonalargescalewouldmakethesystem

especiallysuitedforapplicationsrequiringhighdepthofdischargecycling

whileavoidingthedegradationissuescommoninelectrochemicalbatteries.

ThepilotplantinSardinia,withacapacityof2.5MWe/4MWhe,has

demonstratedpromisingresults,confirmingthesystem'santicipated

operationalcapabilities.TheseoutcomeshaveplacedEnergyDome's

technologyatTechnologyReadinessLevel7,reflectingitssuitabilityfor

broadercommercialapplicationandsignalingasignificantstepforwardinsustainableenergystoragesolutions.

Figure5.CO2Battery'sDome-ShapedHousingfortheInflatableBladderHoldingtheCO2inDischargeModeatAtmosphericPressure(usedwithpermissionfromEnergyDome

Figure5displaysEnergyDome's2.5MW,4MWhCO2Batteryunitin

Sardinia,whichhasbeenoperationalsinceMay2022.Ithighlightsthe

plant'sreal-worldoperationalandgrid-supportcapabilities.EnergyDomeisalsoinadvancedplanningforacommercial-scale20MW,200MWh

plantatthesamelocation,andhasseveralagreementsforadditional

projectsinItalyandbeyond,includingwithAlliantEnergy,whichasprimewonaUnitedStatesDepartmentofEnergyawardin2023toinstalla

commercial-scaleEnergyDomesysteminWisconsin.

7©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

StorworksPower(Thermal)

Storworksisdevelopingsystemstostoreenergyusingheat.Theyfocuson

thermalpowerplants,especiallythoseusingfossilfuels,solarconcentration,ornuclearenergy.Stackableblocksmadeofconcretematerialareusedtostore

theheat.Usingconcretehasproventobecostefficientandflexible.Chargingoccursbypassingeitherhotgas,steam,orhotairthroughsteeltubesintheconcreteblocks.Tousethestoredenergy,aworkingfluidsuchaswateror

carbondioxideispassedthroughseparatetubesintheconcreteblockstorecovertheheatanddeliverittoapowercycle.

Storworksmakesthreedifferentdesigns;differentsystemconfigurationsoffersolutionsforindustrialdecarbonization.

TechnologyBenefits

EnergyEfficient:Inanormalcombinedcycleplant,thegasturbinesmake

abouttwo-thirdsofthetotalpowerwiththeremainderbeingfromasteam-Rankinebottomingcycle.Usingtheconcreteheatrecoverysteamgenerator(HRSG),theturbinescanbesizedsmallerandrunefficientlyalldaylong,

sendingextraenergytotheheatstoragesystemwhenpowerisnotneededandreleasingthisenergywhenneeded.TheRTEis35–45%basedonthe

capabilityofthepowercyclethesystemisattachedto.

CostEffective:Unlikeotherenergystoragesystemsthatstoreheatusingspecializedmaterialsandrequireproprietarypowercyclestogenerate

energy,theStorworksconcretemodulesutilizeexistingpowerplant

hardware,includingthesteamturbine-generators,therebyreducingcapitalcostsfordeployment.Storworksanticipatesthecostofasystemexceeding10hoursofdurationretrofittedtoanexistingsteamturbineassetwouldbe$60–105/kWhe.

Figure6:StorworksBolderBlocs(usedwithpermissionfromStorworksPower,Inc.)

TheStorworksconcretemodules,showninFigure6,arelarge,flatblocks

withembeddedpipessetintothem.Eachtubehasabout2inches(5cm)ofconcretesurroundingthetubeenablingconductiveheattransfer.The

modules,called"BolderBlocs,"areabout40feet(12m)long,allowingthemtobeshippedonaregularflatbedtruck.Wheninstalled,theyarestacked

andconnectedusinganetworkofpipesanddistributionmanifolds.The

finalstackedassemblyiscoveredwithhigh-temperaturerockwool

insulationandcladwithwaterproofmetalsheetsforweatherprotection.Thefootprintisexpectedtobe>500MWhe/acre(1235MWhe/hectare).

8©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

Figure7:StorworksPlantGastonPilot(usedwithpermissionfromSouthernCompany)

TheConcreteThermalEnergyStorage(CTES)pilotplant,showninFigure7,consistsof7layersof

BolderBlocsstackedinabrickwork-likepatternalongwithanadditionalcoolingblocklayeratthe

bottomneededtoinsulatethefoundationsduringoperation.SupercriticalsteamfromthehostsiteenterstheCTESduringcharging(topright),warmingtheCTESandtherebygeneratinghigh-pressurecondensatethatisfurthercooledusingtheheatexchanger(bottomleft)beforebeingdepressurizedandstoredinalocalvessel(topleft).Thiscondensateisreusedduringdischargebypumpingtohighpressureandreversingtheflow,enteringtheCTESatthebottombeforebecomingsuperheated

steam,whichismeasuredandventedtoasafelocation.

StorworksPower(Thermal)

Pilot

TheCTESpilotplant,showninFigure7,isa10-MWhescale(2.5MWex4

hours)systematAlabamaPower'sPlantGastoninWilsonville,AL.LeadbyEPRIandfundedbytheU.S.DepartmentofEnergy,thisfacilityisdemonstratingthetechnology'sperformanceforthesteam-heatedversionbychargingusing

supercriticalsteamatapressureof3500psig(240barg)fromthehostplant

anddischargingatvariouspressuresanddurationstoquantifyperformance

andflexibilityofthesystemthroughoutthefullcharginganddischargingcycles.

Process

Fortheelectricalchargingversion,hotairisgeneratedviathermalheating

elementsandisfedthroughtheconcreteblocksfromthehotendtothecoldend.Thiscreatesa"thermocline"effectwithintheconcrete,forminga

consistenttemperaturezoneforheattransferfromthehottothecoldpart.Asthechargingprogresses,thetemperatureoftheblockmaterialincreases,

approachinghotairinlettemperature.Thisallowshotterairtoheatcooler

concretematerialfurtherintotheassembly.Fordischarge,theprocessis

reversedwithcoolairbeingheatedbytheblocksbeforebeingpassedtoaheatrecoverysteamgeneratortoraisesteamforpowergeneration.

NextSteps

StorworkshasbeendevelopingseveralvariantsoftheCTESsystem:

.FlexJoule:Designedtobechargedusingelectricityfromcurtailedrenewablesources,thisdesignusesairasaheattransferfluidtochargeanddischargetheBolderBlocsandaconventionalHRSGtoraisesteamforheatandpower.

.FlexOps:Steam-integratedBolderBlocsthatchargefromanddischargetoafossilplanttoreduceplantcyclingandlimitthenumberofstarts

Storworksisactivelylookingforcommercialopportunitiesforthesesystemsforstand-aloneindustrialdecarbonizationandfossilretrofittingapplications.

9©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

RedoxBlox(Chemical)

TheRedoxBloxsystem,leveragingmagnesium-oxide(MgXO3)pellets,operatesthroughtwomodes:charginganddischarging.

Charging:MgXO3pelletsareheatedfrom1830°F(1000°C)to2730°F(1450°C)withina

pressurevessel,inducinganendothermicreductionreaction.ThissplitsMgXO3intoMgXO2andreleasesoxygengas.Thisreactionstoresenergyinthesystem,withacapacityof

approximately64,000Btu/ft³(660kWhth/m³).Discharging:Pressurizedairintroduced

intothevesselreactswithMgXO2,reversingthepreviousreactionandreformingMgXO3.Heatgeneratedduringthisreactionisusedinagasturbine(GT)-generatortoproduce

electricityat50-55AC-AC%RTEwhenintegratingwithacombined-cycleGT.Thesystem'sdesigniscompatiblewithstandardGT-generators,enablingittointegrateintoexisting

energyinfrastructures.Thestoragesystemcanalsoproducehightemperatureheatforindustrialheatingapplicationswith90-95heat-heat%RTE.

TechnologyBenefits

HighEnergyDensityandLowPelletCost:RedoxBloxachievescompactenergystoragewithhighenergydensity–itsfootprintis1500–1800

MWhe/acre(3704–4444MWhe/hectare).TheproductioncostofitsMgXO3chemicalpelletsisanticipatedtorangefrom$600–800/ton

(equivalentto$1.8–2.4/kWhth).

CommerciallyCompatible:RedoxBloxisworkingtowardsbothindustrialheatingandelectricalpowergeneration.RedoxBloxismakingitssystemdirectlycompatiblewithcommercialturbomachinery,byrepurposing

existinginfrastructure,includinganaturalgascombinedcycleplant's

heatrecoverysteamgenerator,steamturbines,andelectricalswitchgear.

Figure8.SchematicoftheRedoxBloxThermochemicalEnergyStorageSystem

Figure8detailstheprocessflowoftheRedoxBloxthermochemicalenergy

storagesystem.Chargingmodestartswithheatingviaelectrodespassing

electricalcurrentthroughtheparticlebed,whichraisesthetemperatureoftheMgXO3particlebedwithinapressurevessel.Thisheatinducesachemical

reactionthatstoresenergy.Insulationbyfirebrickandhigh-temperature

materialsensuresminimalthermalloss.Oxygenproducedduringthismodeis

expelledbyanO2blower.Dischargemodestartswithcompressedairfedtotheparticlebed.Oxygenintheairisabsorbedandreleaseschemicalenergyas

heat.Theheatedairfromtheparticlebeddrivesaturbine,generating

electricityforthegrid.Thisdiagramillustratestheenergystorageprocess,fromintakeairtoelectricitygeneration,highlightingthesystem'skeycomponents

andthermalmanagementstrategy.

10©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.

Institute,Inc.Allrightsreserved.

RedoxBlox(Chemical)

PilotDesignCharacteristics

.Nominalstoragecapacity:100kWhth

.Two-thirdsratioofchemical-sensibleheatstorage

.Powerinput:15kWe(electricallyresistiveheaters)

.Thermalpoweroutput:10–20kWth

.Coreoperatingtemperature:1832–2642°F(1000–1450°C)

.Pressurerange:2.4–72.5psia(0.2–5bara)

.Surfacetemperature:<185°F(85°C)

.Bedpressuredrop:<0.15psi(1kPa)

Systemcontrolsweredevelopedtoestablishpressurecontrolloops,setacombinedpowerinputtothesystem,holdaconstanttemperatureovernight,andpreventpressureor

temperatureinthereactorfromsurpassingsafelimits.6

NextSteps

Movingforwardfortheelectricalpowerapplication,RedoxBloxwasrecentlyawarded$9M

fromtheCaliforniaEnergyCommissionfora10MWhth,100kWeprojecttostartoperationin2026.Thesystemwillbemoreoptimizedforheattransferandthepreventionofheatloss,and

itwillreduceassemblyandmaintenanceissuesexperiencedbythepilotsystem.Asafollowup,RedoxBloxisdevelopingoptionstodemonstratethenextscalewith2MWepower

capacity.

Figure9.RedoxBloxEnergyStorageModules(a)and(b)(usedwithpermissionfromRedoxBlox)

Figure9underscorestheprogressionofRedoxBlox'stechnologyfrominitialconcepttolarger-scaleprototypes,eachstepvalidatingandrefiningthesystem'scapabilities.Thesuccessfuloperationofearlierprototypeslaidthegroundworkforthedevelopmentofasmall-scalepilot,drivingthe

technology'spotentialtowardpracticalapplication.

(a)Sub-ScalePrototype(picturedontheleft):Featurestheadvanced10kWhthcapacity

prototype,whichunderwentover1400hoursofcharge-dischargecyclingin2021,highlightingthesystem'schemicalstability.

(b)Small-ScalePilot(picturedontheright):Featurescommercial-designedtemperaturesandpressureswithsimulatedchargeanddischargemodesat100kWhthcapacity,validatingcontrolstrategiesandcapabilities.

RedoxBloxisalsodevelopingitstechnologyforindustrialheatingapplications.Forscale-up,

R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论