数下-工数复习第六章多元函数微分学_第1页
数下-工数复习第六章多元函数微分学_第2页
数下-工数复习第六章多元函数微分学_第3页
数下-工数复习第六章多元函数微分学_第4页
数下-工数复习第六章多元函数微分学_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章元函数微分f(Pf(x,y)

P0(x0y0D的聚点.Ao正数,总存在正数P(x,y)∈DU(P0,(x(xx)2(yy00

|f(P)–A|=|f(x,y)–A|<成立,那么就称常数Af(x,y)当(x,y)(x0,y0

(x,y)(x0,y0

f(xyAf(x,y)→A((x,y)(x0,y0

f(P)

或f(P)→A(PP0(x,y)(x0,y0

f(x,y)

(x0,y0)

zf(xy)Df(xy)Df(xy)D上的连续函数f(xy)P0(x0,y0P0(x0,y0f(xy)的间断点

p

f(P)f(P0)概念z

f(x,y),z

f(xx,y)f(x, 说 1对x求导视y为常数,几何意义也说明了这个问z=f(xy)M0x0,y0)的偏导数有下述几何意义fx(x0y0zf(xyyy0的交线在点M0处的切线M0x轴的斜率.fy(x0y0z

f(x,y)与平面x=x0的交线M0M0Tyy轴的斜率2(x0,y0

时y0可先代入(因此可能简化函数)x求偏导数存可微 ,偏导数连续可微

fff=f连

z=f(xy)D内具有偏导数z

f(x,y),z

fy(xyz=f(xy)的二阶偏导数。按照对变量求导次序的不同有下列四个二阶偏z2z

z 2z

fxx(x,y),yxxy

fxy(x, z

z 2zxyyx

fyx(x,y),yyy2

fyy(x, zf(x,y),uu(x,y),vv(x,zfuf

zfuf u

v

u

vd(uv)du

d(uv)udv

duvduv F(x,y,z)

zz(xyzFxz

x y

(x,y,)z

xx0

yy0z

法平面方xt(xx0ytyy0zt(zz0xy y

z

zxx0yy0z 法平面方xx0yyy0z(zz0F(x,z,y)0FxFyyxFzzx0 3)

(1,yx,zxG(x,y,z) GxGyyxGzzx00 切平面Fx|p(xx0Fy|pyy0Fz|p(zz0 xx0

yy0z000000

z

f(x,y)F

f(x,y)zn(fx,f切平面fx(xx0fyyy0zz0xx0yy0z f 1xx(u,*yy(uv)(参数方程形式zz(u,,,ijk切线v1

(y,z)(z,x)(x,y)nv1v2

(u,v),(u,v),(u,v)

uu(x,y, l

xcos

ycos

z

gradul(l方向投影

uuux,y,z

graduux,y,z

ijkdivijk

rotAAzz

f(x,求驻点

驻点2

2z

2z PAx2BxyCy2A0A0

AC0minu3

f(x,y,

Lf(xyz(xyz

(x,y,z)(一)1zf(xyfx(x0y0)0fy(x0y0)0f(xy(x0y0dzx0y0)0f(xy0xx0f(x0yyy0 (C)②④ 2f(xy在点(0,0)

[f(x,y)f(0,0)](x,

f(x,0f(0,0)0,且

f(0,y)f(0,0) y limfx(x,0fx(0,0)0,且limfy(0yfy(0,0

(x,

f(x,y)f(0,0)

yx2x23证明极限y

x3x6x

2证当(xyykx3趋于(0,0)x3 x3 xxy

6

2x0x0

6

26 x01x01xk去不同值而取不同值。故极限x2x2

x3x6x

24z

(x2y2f(x,y)

x2y20, x2y20,(1)讨论f(x,y)的连续 (2)求fx(x,y),fy(x,(3)讨论fx(x,y),fy(x,y)的连续 (4)求df(x,解:(1)当(xy)0时,显然连续,x2limf(x,y)lim(x2x2

0

fy

yf(xy在(0,0)(2)当(xy)(0,0x2x21fx(xx2x21

xf(0,0xx

x2f(xx2x

xx2x21同理fy(x,x2x21

,fy(0,0)x2当(xy)(0,0fx(x,yfy(xy显然连续,当(xyx2x2x2xlimf(x,y)x2x2x

f(xyy

y x2x(0,0)fy(xx2x当(xy)(0,0df(x,y)fx(x,y)dxfy(x,x2x2x2x2=x2x2当(xy)(0,0

x2x2

dxx2x2x2x2x2x2由于limf(xyf(0,0)fx(0,0)xx2x2

sin 0x0y

x2所以df(0,0fx(0,0)dxfyx2

x0yf(xy在点(0,0)fx(0,0)2fy(0,0)1(A)df(0,0)2dx(B)f(xy在(0,0)zf(x, 在(0,0)点处切线的方向向量为jx(D)x0y

f(x,y)必存 (选考虑二元函数

f(xy)的下面4个性质①f(xy)在(x0y0)连续②f(xy)(x0y0)两个偏导数连续;f(xy在(x0y0)f(xy在(x0y0)(A)(B) (选f(xy)|xy|(xy,其中(x,y在点(0,0)(x,y)在什么条件下,fx(x,y),fy(x,y)存在 ((x,y)0(x,y)在什么条件下,f(x,y)在(0,0)可微 ((x,y)0 1zf(xy,xx2y(xy2z

t)dtf和

x2

y

tu,则x2y

y

t)dtxy2(u)(du)x2yz

f1yf2

y)(xy2)y2(x2y)2xy2z

f1y(f11xf12x)x2f2fx2(f21xf22x)2y(xy2xy3(xy2)2x(x2y)2x3y(x2

y19x2y20有形如ux 解设ry,则u(rxu

r

y

2uy2

2y (r)

u r1

2u

1 (r)

x

y22y1

y2

2yx2x既 x2x 亦 (1r2)2r

(r)c1arctanr 故 u(x)c1arctanx

(c1,c2为任意常数3zf(x2y22z 2z 1 x2y2xxz

yzx2解:设zf(r),x2 2

rx dz dz

z

z

dz dr2z

dr

d

r r 同理可求y2dr2z

,解得zc1cosrc2sinrrx2zx2

x2y2x2x2

x2z

f(t,et

,其中 具有一阶连续偏导数,

2z。2 (2xf2x3y(fexyf 已知函数uu(xyx2y2xy0,试确定参数a,b变换u(x,y)V(x,y)eaxby下不出现一阶偏导数项 (a1,b1设函数z

f(xy在点(1,1

3(x)

f(x,f(xxd

x

1yy(x)zz(xzxf(xyF(xyz)0所确定的函数,fFdzdy 解:zxf(xyF(xyz)0x

dz(

xf)Fyxfdx

fx(1 )

Fyxf

(Fxf

F(fxf FF F z

Fyxf2设函数u定,求du

f(xyzzz(xyxexyeyzez解:duudxudyx求导, u

fz,exxexzezzez ex

z

ex

u

ey所以xezzezx

fxfzezzez

fyfzez exxex eyyey所以dufxfzezzezdxfyfzezzez 3xyzlnyexz1,根据隐函敌存在定理,存在点(0,l,1)的一个邻zz(xyy(xzzz(xxxyzzz(xxxyzyy(x4zz(xy

0:c,f(xyf22

f

2

f22

2xyxy(x

y2d2证明:f(x, c为一直线,当且仅当

0f(xyx求导ffdy0dyfxx y

f dy( xy

dx

f

d2 dy d2 fxx2fxydxfyy(dx)fydx2

d2必要性:若(x,

0,由(1)

2

dyxy

(dy)2yy

2

2

2

(f

20

f

(f

f22

f

2

f22

2xyxy(x

y2

d2

2

dyxyd2

(dy)2yy比较(1)式,fy

0fy0

0,即(xy)c5z(xyF(xzyz0xzyzz xF(11zF(z1z0x2y y xyzFx2

xzFy2xzx xF1xzyzz

,由对称性得yzy xF1

x x二练习1.设函数z

f(u)u(uyp(t)dtuxyf(u),(up(u),(u连续,且(u)1pyzp(xz 例1求函数uxyezxtyt22ztt3M(1,1,0

t1,曲线在点MM M 其方向余弦为cos

,cos

cos3

coscos 11121 33

12xtyt2zt3x2y3z0垂直的切线方程,ux2y2z2z 解:设切点参数为t0,则s1,2t0,3t0n1,2,3,即00,所以t0切点(1,1,1s1,2,3)x1y1z

123s0 123

cos cos 0 0

3x2y2z23上与(1,1,1点处的切平面平行的切平面方程,ux22y23z2在点(1,1,1x2y2z2300n2(Fx,Fy,Fz)(x,y,z)(2x0,2y0,2z0)//(x0,y0,z000n1n2x0y0z0x0y0z0切平面方程

(x1)(y1)(z1)n0

1,1,

333 3333uucosucosu 3

0 0

xyb Lxayz30在平面上,而平面z(1,2,5),求a,b之值

yx22.函数zx2 (D)可 (选2x22y2z212上求一点,f(xyz)x2y2z2

12

1,021f(xy在点(0,0)y

f(x,y)f(x2y2 1(A)点(0,0)f(xy极值点(B)点(0,0)f(xy(C)点(0,0)是f(x,y)极小值点(D)由条件不能确定(0,0)是否为极值 (选21f(0,0xy时,选例3f(xy预(x,y均为可微函数,且(xy)0,已知(x0y0)f(xy在约束条件(x,y)0下的一个极值点,下列选项正确的是(A)fx(x0y0)0fy(x0y0)(C)fx(x0y0)0fy(x0y0)

(B)fx(x0y0)0fy(x0y0(D)fx(x0y0)0fy(x0y0)例4zf(0,00

f(xy的全增量z2x3)x2y4)y

(1)z的极值;(2)zx2y225(3)zx2y225z2x3z2y4zx23xyzy)2y 所以yy24yc

zx23xy24y

,由f(0,0

,得c0zx23xy24z2x3 x

2z

2z

2z (1)由 A

2,B

0,C zy2y4

y1

ACB240A20z3,26.252(2)L(x,y,)x2y23x4y(x2y2Lx2x32x x3 x3y2y2Ly2y42y0得y2y2x2y225

4,z(3,4)

,及

,z(3,4)例5F(x,yz处处有连续的偏导数,并且三个偏导数在任何一点不同时等于SF(xyz0不含原点,M(x0y0z0是曲面上距原点最近的点。求证该M(x0,y0,z0)的法线经过原点。证明只须证明曲面在点M(x0,y0,z0)处的法向量平行于OM(x0,y0,z0) 极值问题minf(x,y,z)x2y2F(x,y,z)f(xyzS上任一点(xyz构造辅助函数L(xyz)f(xyzF(xy

按照题意f(xyz)在点M(x0y0z0x0y0z0(x0,y0(x0,y0,z(x0,y0,z0

2

(x0,y0,z0(x0,y0,z0(x0,y0,z0FFF于是向量(x0y0z0与x,y,z

(x,y,z00另一方面,曲面SF(xyz)

在点M(x0y0z0

处的法向量为FFFx,y,z

SM(x0y0z0M(x0y0z0 (x,y,z00与向量OMx0y0z01.设zz(x,y)是由x26xy10y22yzz2180确定的函数,求z(x,y)的极值 (极小值z(9,3)3,极大值z(9,3)3)2.zf(xy的全微分dz2xdx2ydyf(1,12f(xy D(xy|

(f(0,2f(0,22f(1,0f(1,03xoyDxy|x2y2xy75},小山的高度函数为h(xy75x2y2M(x0y0D上一点,问h(xyg(x0,y0g(x0,y0Dx2y2xy75上找出使(1)g(xy达到(y2x)2(x2y 00 (y2x)i(y2x)2(x2y 00 (x0,y0 x2y22z24.已知曲线Cxy3z

,求Cxoy第七章元数量值函数积分多元数量值函数积分的概念与性nnf(M)d=I=d

f(Mi)ii1f(M)在几何形体f(M)在f(M)在有界闭几何形体f(M)在上必可积。11dd.2[f(M)g(M)]d

f(M)d

g(M)d 3f(M)df(M)df(M)d

f(M)g(MMmf(M)在闭几何形体f(M)在闭几何形体上连续,则在上至少存在一点M0 f(M)df 二重积 f(x,y)d=limf(,)0iD三重积分f(xyz)dv

f(i,i,i)

0i对弧长的曲线积分

f(x,y)ds= f( 0 f(x,y,z)ds f(,,0nf(x,y,z)dS=limf(i,i,i)Sin

累次积分积之。说明:1(D)12选择积分次序要合适,若先yxI1

xsinydx322

ex2,cosx2,sinx2sinxx

21计算2

y2 2y

2y y

12

y

dy0

dy0xdx30y 12y2dey21y2ey22

y 26 6

14e4ey221(15e46 0 2计算二重积分dxsinxdy4dx2sinx 2 2 y 2 2 I1

sin2ydx

2)dy

y

dy (2 1xb例3计算

(a,b0

xyyxyy0

b=dxxydydyxydx

dy

ay

a4

xxxD

dxdyDx2y21xy1Dx r(cossin

2dxdy2d

Dx

42(cossin1)d 例5 (|x|D:|x||解:原式4|x|dxdy41dx1xxdyD D16求(xy)dxdyD是圆心(a,bRD(xy)dxdy((xaybab))dxdya 7计算xydxdyD是双纽线(x2y222xyD解:双纽线(x2y222xy的极坐标方程为r2sin原式22d

sin

rcosrsinrdr 例8 D:x2y2

1 1 解 xdxdyD:x2y2

ydxdyD:x2y2

(x2D:x2y22

)dxdy2

d0rdr9f(x在0x1f(x)01xf21 1

1f21010f1 证明:只须证明0f(x)dx0xf(x)dx0xf(x)dx0f=1f2(x)dx1yf(y)dy1xf2(x)dx1f(y)dxf2(x)f(y)(y D=f2(y)f(x)(xy)dxdy1f(x)f(y)(yx)(f(x)f(y))d 210求|x2y21|dxdyDx2y29D解Dx2y21D:1x2y2 原式(1x2y2dxdy(x2y21)dxdy 11求emax{x2y200y0x1y解:emax{x2y2}dex2dey2d0x1y

ex

ey

dxe100y

12计算二重积分[xy]dxdyDxy|0x2,0yD解:xyjj1,2,3,4DDk(k1,2,3,4,则[xy]k1k1,2,3,4,因而[xy]dxdy0dxdydxdy2dxdy3dxdy32331

f(x连续,f(0)1F(t)

f(x2y2x2y2t

t0)F000解F(t2dtf(r2rdr2tf(r2rdrF(t2f(t2000F(0)limF(t)F(0)lim2f(t2)2f(0)

t

t2y计算二重积分ydxdyDx2,y0,y22yD (4 2计箅二重积分|yx2|dxdy,其中D{(x,y)||x|1,0y (11 设D={(x,y)|x2y2 2,x0,y0},[1x2y2]表示不超过1x2y2的最大数,计箅二重积分xy[1x2y2]dxdy (3 f(x在[a,bf(x)0,证明bf(x)dxb1dxb aff(x在(0,f(t)e4t2

x2y24t

f

dxdyx2x2f(t

f(t)e4t2(4t2 y2( z2(x,y 投影

f(x,y,z)dvadxy(x)dyz(x,y)

f(x,y,z)dvc2dzf(x,y,z z柱面坐 f(x,y,z)dxdydz=f(cos,sin,z)dd 球面坐标f(xyz)dxdydzf(rsincosrsinsinrcos)r2sin 一般方法f(xyz)dxdydzF(uvw|J|

V其 F(u,v,w)

Vf(x(uvwy(uvwz(uvw

y21求(x2y2z)dV:由曲线

x

z解:x2y22z4 2 43I (x2y2z)dxdydzd (r2z)rdr 3 Dz:xy2448 dx2y2(x2y2z)dzd rdrr2(r448

z)dz

2563 Dxy:x2y2 R2x2例2计算三重积分(3x25y27z2)dV,R2x21解设x2y2z2R2,则由3x25y27z2z1(3x25y27z2)dV1(3x25y27z21 21由轮换对称性x2dVy2dV 故原式1(3x25y27z2215(x2y2z22152dsindRr2r2dr2 0P0距离平方成正比(比例常数k>0),求球体质心位置。0解:设球体为Ω,球心为原点,P(0,0Rx2y2z2R2(xyz

xy zk(x2y2(zR)2 2Rz k(x2y2(zR)2

(x2y2z2RzR22R(x22z2

8

R2dsindRr2r2drR2

4求f(xyz)dV,其中x2y2z2(xyz)2f(x,y,z)

当zx23x2x23x23解:原式(x2y2z22xy2yz2xz)dV

4cos

4cos

3sin

r4dr

d2sin3

r3cosdr 例5设函数f(x)连续且于零f(x2y2z2F(t):x2y2z2t

f(x2y2t,G(t)D:x2y2ttf(x2y2D:x2y2tF(t在区间(0,2证明当t0F(t)G(t2

f(x2 2dsindtf(r2 2f(r 000(1) 0002dtf(r2 tf(r2tf(tt2F(t)t2

)0f

)r(t0F(t在(0, 0f

)rdrt 20ft

2

tf t2 t2

t2(2)t0F(t)G(tt2

0f

0f

只需证

(t)

tf(rt

)r

tf(rt

f(r

)rdr

0 又(0)0,所以(t)0

(t)

f(t2)0

f(r2)(tr)2dr

:x2y2z2R2

z

及2

1:x2y2z2R211x0y0z01(A)xdV4

ydV4 (C)zdV4 (D)xyzdV4

2.计算f(xyz)dVx2y2za)2a2x2f(x,y,x2

,当zx2,0x2

a41x22x22f几何解释:1.

12.第一型曲线积分Lf(xy)dsf(xy0xOyL为zf(x,y)的柱面面积。xy

ds

x2y2

yy(x)dsds1y2(xxr()(dx)2(dy)2rr()(dx)2(dy)2

r2r2x yzy

ds

x2y2z2 z(x

ds

1y2z2dx(此类空间曲线常以隐式方程形式出现xdsdxy

ds x2y2z2 1I(zy)dsc为 xyz解曲线cx2y2z2R2xyz0xyzzdsydsxds1(xyz)ds10ds 3 3y2dsx2dsz2ds1(x2y2z2)ds1R2ds1R22R2 3

3 I(zy2)ds2R3 x2y2z2R2x0y0z0的边界曲线的质心,

(3

4R

4R

1zz(xy dS

1z2z2 f(x,y,z)dS f(x,y,z(x,y)1z2z2 yy(zx),则 dS

1y2y2 f(x,y,z)dS f(x,y(z,x),z1y2y2 Dyzxxyz dS(一)

1x2x2 f(x,y,z)dS f(x(y,z),y,z1x2x2 1求(x2y2z2xy2x2yz)dS,其中x2y2

(0z1zx222解:由对称性,得xy2dS1zx222 原式 (2(x2y2) x2y2)2dxdy Dxy:xy3例2设曲面:|x||y||z|1,则(x|y|)ds (4 333S为球面(xa)2yb)2zc)21(xyS解(xyz)dSxaybzc)]dS(ab 由于球面(xa)2yb)2zc)21xaybzc(xa)dS(yb)dS(zc)dS (xyz)dS=(abc)dS4(ab 例4计算曲面积分((2x3x2cos2y3y2cos3(z21cos)dsz1x2y2(z0),coscosco为曲面向余弦(cos0z解:设1x2y21原式

(6x22x6y22y6z)dV2

2

1r =6(x

z)dV3

(rz)dz323(二)1S:x2y2z2a2z0SS1

xdS4 (B)xdS4 (C)zdS4 (D)xyzdS4

x2计算曲面的质量其中为锥面z 在柱体x2y22x2任意一点(x,y,z)处的面密度函数为该点到xoy面的距离 ( 29 (4(abc)R2

I(xyS

S:(xa)2(ya)2(za)24.设半径为R的球面的球心在定球面x2y2z2a2(a0)上,问R为何值时,球面在定球面内部的面积最大? (R4a)38曲面积向量值函数在有向曲线上的积分第二型曲线积

w|F||l|cosF变力沿曲线运动

dw|F|dsPdxQdy,则WLPdxQdy平面曲线LPdxQdy,空间曲线LPdxQdyRdz,性质LP(x,y)dx+Q(x,y)dy=t1{P[x(t),y(t)]x(t)Q[x(t), P

ydxdyLPdxQdyL的取正向的边界曲线,D为单连通区域,P,QDLP(x,y),Q(x,y及DLPdxQdy=0DCLPdxQdy(3)存在u(x,y(3)存在u(x,ydu=P(x,y)dxQ(x,y)dyPdxQdyduu(4)P

D内恒成立 (2)1I[ycosxy]dxy)sinx1]dy,这里yOm OmA是位于连接O(0,0A(,的线段OA下方的任一光滑曲线。且OmA与OA所围图2.ABBOB(0,I

(QP Om0(()cosx)dx0(1)dy22 xdy

例2L

x2

L为上半椭圆a2

1(abA(a,0)B(0,b)C(a,0)

y2 (x2y2

x,积分与路径无关,取l

(上半圆xacos即yasin原式

xdyydx

xdyydx

0(a2cos2ta2sin2t)dtallx2 2 a2all3设(xy),v(xyD:x2y22x2yD D曲线C上u(xy)x,v(xy)yxy)vxyD xy)vxy)u]dxdyuvdxuvdyxydx (yx)dxdy[(y1)(x1)2]dxdy2dxdy 4D为曲线Cr1cosA,C C函数uu(xyDx2y21,证明ndsACn是uDuds(ucosucos)ds(ucosucos)dsudyuC

C

C

C (x2y2)dxdydxdyA20d

rdr 2 2x4例5设f(u)存在连续的导数,且0f(u)duA0,L为半圆周2x4B(2,0。计算

f(x2y2)(xdxX(xy

f(x2y2)x,Y(x,y)

f(x2y2y,f(x2y2)(xdxydy)

XdxX(xy),Y(xyY2xyf(x2y2) f(x2y2)(xdxydy)=

f(x2y2)(xdx2f(x2)xdx14f(u)du0

2

(xay)dx(x

为某函数的全微分,求常数a。a计算L

xdyydxL:ABCA(1,0x2y21B(1,04x2到Dxy|0x,0y}LDxesinydyyesinxdxxesinydyyesin xesinydyyesinxdx2L计算曲线积分I

xdybxbxaL

(ab0ab)L是以点(1,1)为中心,2222R(R

2为半径的圆周,取逆时针方向。R

时I0R

时,I

xdyydxA(常数,其中(xL是绕原点(0,0) y

xdyCC为任一不过原点也不包围原点的正向闭曲线,证明(xy2C当(1)4时,求(x)及A ((x)4x2,A向量值函数在有向曲面上的积 流量Q|v|Scos(nv)vsdQvdsPdydzQdzdxv(P(x,y,z),Q(x,y,z),R(x,y,vdSPdydzQdzdxS SS S R

x

zdvPdydzQdzdxRdxdy R或x

zdv(PcosQcosRcos 这里是的整个边界曲面的外测coscoscos是在点(x,yz)向余弦

xdydzydzdx

1I

3(x2y2z2

a2

1PQR0

x2y2z22 I

xdydzydzdxzdxdy

3dv 3

3

xdydz

例2

x2y2

,其中

是由曲面x

R及两平zRzR(R0解:设123依次为xy

xyxy

xyxy

(R)2dxdyx2y21

x2y22 R2

x2y2R

x2y2R2

x2y2R

x2y2 x2y2

R2

dydz

R2

R2RR2R

2dydz

R2y2

RDyzRR

RR 3If(xyzx)dydz2f(xyzy)dzdxf(xyzz)dxdyfxyz1被坐标面所截部分,上侧。F(x,yz)xyz1I((f(x,y,z)x)Fx(2f(x,y,z)y)Fy(f(x,y,z) ((f(x,y,z)x)1(2f(x,y,z)y)1(f(x,y,z) (xyz)dxdydxdy 级数的知识框级数的概念与性1u1+u2+u3++un+=un sn=ui称为部分和,若limsns称无穷级数un

uns,则kun收敛到ks unvn收敛到s,,则级数(unvn收敛到s

如果级数un(u1un)(un1un)(un1

)

k un收敛,则limun

数项级 小收,小发大比较法 lim 根植法:limnanl,l1收,l1

f(x)dxf(n) 交错级数:莱布尼兹判别法,un1un,limun任意项级数

函数项收敛半径R

(一) n

n 1结论1若an

an(如an

(2

n

1n

n

(3)

a收敛,则

a2收敛(如

(1)n

(4)

a2收敛nn

n

n

nn则n则a3nn (B)24对例2证明若偶函数f(x)x0的某邻域内有二阶导数,且f1

f(0)1,则n n1 f(xf(0

f(x)f(0)f(0)x

f(0)x2o(x2)f11f(0)

o1,

f11

f(0)

o1

f(0)n

n2 n

n2

|u

f11~f(0)

f1即 n n2, n 绝对收敛 n1 3设{un},{cn},满足cu

0

1发散,则u n n1n n1u

n n,满足cnncn1a(常数a0,且 收敛,则un也收un

c

c

n1u

n(1)

n

n n

11

n

n

ccunnn(2)由条件 unn

a0,得

c

cu,所以uc1u1un

n

n

n n

1 nc1收敛,则uc n1

n

n 4设正项数列{an}单调减少且

an发散,证明

n

n

an{a}单调减少且(1)nalim

a0n有

an a

n1

n 所以un1n1 n1

(anan1,而(anan1

nSna1an1a1ann例5xnnx10nxnaa1时。级数xnfn(1)n

nn(x)xnnx1,x(0,f(x)nxn1n0n

fn(0)10xnnx10

(0,1

0x

1f n1

1xn n

n6设an和bnn1n1bn收敛时,n

n

n

n 也收敛;当anbnn

nan1bn1 a2b2,a3b3,,

b1

a1

an

a

ban

1 有比较法知,当bnan也收敛;当anbnn

n

n

n

7设正项数列{a}单调减少,且(1)na发散,试问

n

n1an解由于an0{an}limanan

a0n若a0,则由莱布尼兹判别法有(1)na收敛,与假 ,故a0。于nn 1 1 1,从而 a a a

a

,而a

1

(二) a0p0limnpen1a1,若级数a (p2

n

n设annn

n

ununn

n

(u2n

)n

un1

0设an4tann0(1)求n

nan

1(2)证明:对任意的常数0,级数n

1 1

设a12an12an

15.y5.

nyx

且y(0)且

n1

n

y111散性

n1

n nn讨论级数p的敛散性nn|a|1时,级数发散;当a1时,若0p1p1级数收敛;当a1时,若0p1p1时级数绝对收敛) 两个正项级数anbnnn(n1,2,,讨论两个级数敛散n

n

an

(当an发散时,bn必发散;当bn收敛时,an必收敛n

n

n

ny2exsin

(x0)x

e1关于幂级n

R22(RR内ax(且内闭一致收敛nnf(n)(0) f(n)(x f(x)~ x或 0(xx0n n 1)1

1xx2x3(1)nxn

1x12)1

1xx2x3xn1xe

1x22

xnn

(x3sinxx3

x(2n

(x2cosx12

x4

x2n

(x2ln(1x)x22

3

4

n

(1x(1x)m1mxm(m1)x2m(m1)(mn1)xn (1x变换之后使用公式,求导,积分公式可和型和式求导(或积分)于原式结合1求n

(xn

1,即当|x3|12x4x2n

发散,故收敛域为[2,4n nn2设axnx2处条件收敛,则nn

(x1)2nx0n n(A)(B)(C)(D)敛散性由具体{an}13f(xx23x4x111

1

1x23x

5x

x11 1 1

(x1)n,xx

(x1)

31x13

3n 1 1 1

(x1)n,xx

(x1)

21x12

2n 1 (1)n n0x23x453n1n04(1)求n

2n

(x

,xR1|x|1S(x)nxn1nS(x)dx

x

nxn1dx

xn

,故S(x)

x

,|x|xx

0

1x

n(2)求nn R1x[1,1S(x)x,则S(x

xn1n1

n

1xS(x)S(xS(0)x

,1xS0 n(3)求nn

1 解:在(2)中,令x 2

n

n

S()ln25求n

(1)nn1x2n1(2n解:收敛域(,S(x)n

(1)nn1x2n1(2n 1 20S(x)dx 2n

1从而S(x) (sinxxcos12

x x2nn例8求135(2n1n x2nn解:收敛域(,S(x)135(2n1n

2x41S(x)1xS即

xS(x)e2

xe2xS(0) x(二)n若幂级数ann

R0,则liman11n

n limn1不存在,则幂级数an

n

n 若幂级数axn收敛域为[1,1,则幂级数naxn的收敛域为[1,1nn

n若幂级数n

aax收敛域为[1,1,则幂级数nn

anxn的收敛域为[1,1(D)n1 nf(x)arctan12xx的幂级数,并求级数2n1n (1)n

2n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论