技术交底—测量_第1页
技术交底—测量_第2页
技术交底—测量_第3页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中铁成都投资发展有限公司技术交底记录编号:单位工程名称分项工程分部工程施工项目施工测量施工单位中铁十局集团成都地铁 7号线 9标项目经理部交底人审核人 交底日期交底内容地铁工程测量工作可分为建立控制网和以控制网为基础的施工放样测量两部分。主要内容包括: 1、复测设计院交接的控制点,再根据实际情况加密平面控制点及水准点,在地面建立平面与 高程施工控制网; 2、将地面上的坐标、方向和高程传递到地下去的联系测量; 3、在地下进行平面 与高程控制测量; 4、根据地面、地下控制点进行施工放样,指导地下工程的正确开挖、主体结构 施工以及盾构施工,保证开挖、主体结构和盾构施工不超过规定的限界,保证线路各相向

2、开挖面在 平面和高程上按设计的要求正确贯通。一 平面及高程控制测量作业方法1、地面控制网及交桩点复测 交接桩后,组织项目部测量队、公司级别的精测队、中铁二局精测队依据甲方提供的“平面、 高程控制点成果”对导线控制点进行复测 ,同时根据现场施工情况,对精密导线加密点、 ,水准加密 点按规范进行联测,并报中铁二局精测队进行复测。当测量成果满足规范要求,方可使用导线及水 准加密点的成果,形成三级复核制度, 并将复测报告结果上报监理单位。若导线网和高程网精度 分别能够满足工程测量规范中的四等导线测量和二等水准测量的技术要求, 则对测量桩点进行标识 和保护 ;如较差超限立即以书面形式上报监理工程师确认

3、,由监理工程师及时会同甲方和控制测量单 位研究解决。2、地面加密点布设 利用业主设计提供的平面控制点和水准点,根据本工程的施工需要,在地面上埋设相应的加密 平面控制点和加密高程控制点,选点布设情况如下:1)地面加密导线点以业主提供的精密导线点 (GPS 点)为依据,根据盾构区间及车站的位置走向, 在每个施工场地附近,根据现场情况布设平面控制点。所设的加密导线点与业主所提供的平面控制 点形成一条闭合或附合精密导线。2)地面加密水准点以设计所提供的精密水准点为依据,在每个施工场地附近根据场地情况布 设加密水准点。所设加密水准点和业主所提供的精密水准点形成一条附合水准路线。水准点间的高 差,以安置一

4、次水准仪即可联测为佳。点位应埋设在稳固安全、能长期保存、便于寻找和施测的地 方,导线点可兼做水准点。3)加密点布设应远离烟囱、散热塔、散热池等发热体及强电磁场。4)点与点之间必须通视良好,其视线距障碍物的距离不宜小于1.5m,以能保证成像清晰、不受旁折光等因素影响为原则,尽可能选在避开施工干扰、车流和人流量少、稳定坚实的地方。3、地面加密导线测量1)根据规范要求按精密附合导线的作业要求进行施测。2)导线点之间的高差不宜过大, 其视线距障碍物的距离不宜小于 1.5 米,以减弱地面折光和旁 折光的影响。对于高差较大的测站,采用每测回观测都重新整平仪器的方法进行多组观测,取平均 值作为该站的最后结果

5、。3)用全站仪测量边长时,考虑气象改正和棱镜常数改正。4)为保证导线测量的精度,应做好以下几点: 水平角观测采用 2 全站仪 , 仪器应经过有检定资格的单位检定。 水平角的观测,应在观测总测回中以奇数测回和偶数测回分别观测导线前进方向的左角和 右角。左角平均值与右角平均值之和与 360°较差应小于 4,其误差值不应大于测角中误差的 2 倍。 前后视边长相差较大,观测时需要调焦时,宜采用同一个方向正倒镜同时观测法,此时一 个测回中不同方向可以不考虑 2C 较差的限差。 水平角观测过程中,气泡中心位置偏离整置中心不宜超过 1 格,当观测方向的垂直角超过±3°时,宜在测

6、回间重新整置气泡位置。 导线的技术要求如下表 :导线每边测测回数方平总长距中误测距相测角中级级位角闭全均边度差对 中 误误差全站全站合差长相对相邻点的相对点长(m)(km)( mm)差()仪仪()闭合差位中误差( mm )35034±41/60000±2.5465n1/35000±8表 水平角观测结束后,测角中误差应按下式计算:1 f fmNn式中: f 附合导线或闭合导线环的方位角闭合差();n计算 f 时的测站数;N附合导线或闭合导线环的个数。 测距时,应在启动仪器 20-30min 后观测,以保证仪器适应室外环境;在成像清晰和气象条 件稳定时进行,雨、雾和大

7、风天气作业时尽量避开,不宜顺光、逆光观测,严禁将仪器照准头对准 太阳;测距过程中,当视线被遮挡出现粗差时,应重新启动测量;当观测数据超限时,应重测整个 测回。 测距的主要技术要求 :·总测回数 :往返测各 2 测回;·一测回指照准目标一次读数 4 次;·一测回读数较差 (mm): 4;·单程各测回较差 (mm): 6;·往返较差 (mm): 2(a+b×D)。 内业计算中数字取值精度的要求如下 :·方向观测值及各项修正数 (): 0.1;·边长观测值及各项修正数 (m): 0.0001;·边长及坐标 (m

8、): 0.0001;·方位角 (): 0.1。4、地面加密水准测量1) 施测前,要对所使用的水准测量仪器和标尺进行常规检查与校正。一等水准测量仪器的i角应小于或等于 15。2) 水准的往、返观测应各选在天气晴朗的上午和下午分别进行,要避开大风大雨天气,每次 观测前都应先让仪器适应室外环境后,方可进行观测。3) 采用单一水准路线(附合或闭合),以精密水准的等级进行往、返测,观测次序如下:往测奇数站的观测程序:后前前后; 往测偶数站的观测程序:前后后前; 返测奇数站的观测程序: 前后后前; 返测偶数站的观测程序:后前前后;由往测转向返测时,两根水准尺必须互换位置, 并应重新整置仪器。4)

9、 往、返测高差较差满足精度(闭合差 4 Lmm;L 为往返测段 ,附合水准路线的长度,以km 计)要求后进行计算机平差,求出各高程点的高程。较差超限时,应重新观测。5)在测导线时可利用光电测距三角高程法对水准点进行校核。表 水准测量的测站观测限差( mm)等级上下丝读数平均 值与中丝读数之 差基、辅分划读数之差基、辅分划 所测高差之 差检测间歇点高差之差一等3.00.40.61.0二等3.00.50.72.0注:使用数字水准仪观测时,同一测站两次测量高差较差应满足基、辅分划所测高差较差的要求。表 水准网测量的主要技术要求水 准 测量等级每千米高 差中数中误差( mm )附合 水准路线 平均长度

10、 ( km )水准仪等级水准尺观测次数往返较 差、附合 或环 线 闭 合差 ( mm )偶然中 误差 M全中误差 MW与已知点联测附合或环线一等±1±235 45DS1铟瓦尺或条码尺往返测各一次往返测各一次± 4 L二等±2±424DS1铟瓦尺或条码尺往返测各一次往返测各一次± 8 L注:1、L 为往返测段、附合或环线的路线长(以KM 计);6)采用数字水准仪测量的技术要求与同等级的光学水准仪测量技术要求相同。加密测量完成后将设计给的点与加密点成果一起报中铁二局,中铁二局根据要求进行对 平面及高程的交桩点及加密点进行复测,当结果满足要

11、求后,施工方方可使用设计及加密点 的成果。在施工放样过程中采用四等导线测量及水准测量。5、平面和高程联系测量由于本工程为地下工程,为确保施工的准确性,因此在施工期间须进行平面及高程联系 测量,将地面的平面坐标、方位及高程传至隧道。本区间的联系测量拟采用钢尺导高法和两 井定向法进行。1)两井定向法平面联系测量 根据本区间始发井实况平面联系测量决定采用两井定向法进行几何定向,如下图:RNALNLSRS中 A、B 为从左线或右线两井口吊下的钢丝,RN、RS为右线两基线点, LN、LS 为左线两基线点在两井定向中,遵循以下几点: .两井定向独立进行三组,每组分左右线分别计算基线点坐标,坐标闭合差满足规

12、范要 求后平差,最后取三次的平均值作为该次的定向最终测量成果。 .边长测量采用全站仪测距,读至0.1,精度 1mm+2ppm 。边长采取往返测量三测回,各测回较差井上应小于0.5,井下应小于 1.0。井上与井下同一边边长较差应小于。 .角度观测应采用级全站仪,用全圆测回法观测四测回,各测回间同一方向观测值互 差应不超过± 4。 .基线边方位角互差应满足相关规范要求。 .由联系测量所测定的基线方位角中误差在±8之内2)高程联系测量:地面与结构底部之间的高程联系测量可直接采用精密水准仪从临时便 道分层转点,将地面高程引至结构底板上。在底板上不受施工影响的位置布设至少三个以上 水

13、准点,以保证水准点的相互复核,水准点作为控制基坑开挖深度和区间结构高程的依据, 须定期 ( 每月进行一次 ) 复测,确认老水准点无变化,方可引设新水准点,当隧道施工至一定 距离后,各施工队之间也应进行高程联测,保证地铁主体结构贯通时的高程精度。3)导线控制点联测与高程控制点联测同步进行,把水准点设置在加密的导线点上以提高 测量工作效率,根据工程实际情况每次施工中进行导线测量,将测量成果按规定一式三份上 报第三方测量中心,经测量中心复测无误后,才可以指导施工。为了保证与相临标段的顺利 贯通,每次联系测量复测时都联测至相邻标段控制导线点上进行复核。6、隧道内控制测量:联系测量将在地面平面及高程控制

14、网坐标传至底板上,随着盾构机的不断沿线路方向往 纵深掘进,隧道内也需随后进行平面及高程控制测量,以指导盾构机按设计线路方向正常掘 进及对环片姿态、盾构机姿态进行检测、对导向系统控制点坐标进行调整。隧道内控制测量 分为平面及高程控制测量两部分。 导线采用级全站仪观测,外业按四等导线作业要求施测, 平均边长不短于 150 米,测角中误差不超过± 2.5。隧道内平面控制测量是以平面联系测量 基线边为基础的加密控制测量,盾构机每掘进到一定深度后,需加密一个平面测量控制点, 以便指导盾构机正常掘进。 由于盾构施工为单向式掘进, 洞内导线可布设成单一支导线形式, 也可布设成跳点式闭合导线方式,以

15、增加图形条件及检核条件,剔除粗差。外业作业要求可 按四等导线测量或不低于精密导线作业精度要求进行施测,平面控制测量用 1 秒级全站仪测 量,测角 6 测回(其中每次测量三次对中,左、右角各 4 测回,均值之和与 360°的较差小 于 4)测边往返各四 4 测回,相对中误差± 1/30000 ;隧道内高程控制点(即高程联系测 量控制点)为基础的加密控制测量,测量用 NA2 级自动安平水准仪测量,洞内水准测量二等 水准测量或不低于精密水准测量作业精度要求进行施测,高程控制测量技术要求符合二等水 准技术要求。二 施工放样测量1、图纸、资料的复核根据设计图纸所给定的曲线要素、各点里

16、程、方位角。我们用电脑程序软件算出各个点 的坐标。对本标设计图中左、右线的设计坡度、基底标高、竖曲线要素进行计算;结构图的 各部位尺寸和曲线加宽值进行复核,结果无误。2、车站施工放样1)明挖段施工放样根据明挖施工特点,其施工测量包括线路中线和边线、围护施工测量、基坑开挖施工测 量和结构施工测量。 、 中线、边线放样:一般应从 GPS 点或精密导线点直接放样中线、边桩放样,利用 全站仪进行线路中线放样,每个断面的放样次数根据工程施工时的施工工序确定。线路中心 间距直线上不应小于 100 米, 曲线上除曲线元素点外其间距不应小于60 米,放样后应设固定标志。线路中线控制点测设完毕后应将其串联成附合

17、导线形式的线路中线,并进行线路中线 测量。施工控制导线测量宜采用 II 级全站仪施测,左、右角各测量二测回,左右角增均值之 和与 360°较差应小于 6,边长往返观测各二个测回,往返观测平均值较差应小于7mm 。施工控制导线最远点点位横向中误差应在± 25mm 之内。每次延伸施工控制导线测量前,应 对已有的施工控制导线前三个点进行检测。检测点如有变动,应选择另外稳定的施工控制导 线点进行施工控制导线延伸测量。高程放样:采用水准测量的方法,利用平差后的高程基点,根据施工要求,将结构底板 高程引测到基坑底,通过此点高程,宽度及板厚来控制施工标高。采用往返测量,高差闭合 差 1m

18、m 满足二等水准作业规范要求。地下施工水准测量可采用 DSZ2 水准仪和 5 米塔尺进 行往返观测,其闭合差应在 20Lmm (L 以千米计)之内,施工至底板时,准确定出基坑底 板对应里程的设计高程,每次放样都必须有清晰的原始记录。 、围护(人工挖孔桩及旋挖桩)施工时测量要求: 人工挖孔桩及旋挖桩地面位置放样,依据线路中心控制点进行,放样允许误差纵向不应 大于 100mm ,横向应在 0+50mm 之内。桩孔成孔过程中,应测量孔深、孔径及其铅垂度。 钻孔桩竣工后,应测定各桩位置及轴线的偏差。其横向允许偏差值应在 0+50mm 之内。 、 基坑开挖施工测量的要求:测放基坑开挖边线,清除基坑范围内

19、障碍物、处理好需 要悬吊的地下管线;基坑两侧 10 米范围内不得存土。基坑开挖宽度,放坡基坑和基底到主体 结构边缘距离不得小于 0.5 米。基坑必须自上而下分层、分段依次开挖,严禁掏底施工。放 坡开挖基坑应随基坑开挖及时刷坡,边坡应平顺符合设计规定;基坑开挖接近基底 200mm 时,应配合人工清底,不得超挖避免扰动基底土;基底应平整 压实,其允许偏差为:高程 10-20mm ,不得超 20mm ,并在 1m 范围内不得多于 1 处。基坑开挖至底部后,应采用附合路线形式将线路中线引测到基坑底部。基底线路中线纵 向允许误差为± 10mm ,横向允许误差为± 5mm 。基底垫层厚

20、度控制在 50 mm 以内。4)工程主体结构施工测量:、结构底板绑扎钢筋前,应依据线路中线,在底板防水卷材上定出钢筋摆放位置,放 线允许误差为 +10mm 。、底板砼立模的结构宽度与高度,预埋件的位置和变形缝的位置放样后,必须在砼浇 筑前进行检核测量。 、结构边、中墙模板支立前,应按设计要求,依据线路中线放样边墙内侧和中墙壁中 心线,放样允许偏差为 +10mm 。 、顶板模板安装过程中,应将线路中线点和顶板宽度测设在模板上,并应测量模板高 程,其高程测量允许误差为 +100mm 之内,中线测量允许误差为± 10mm 宽度测量允许误差应 在+15 10mm 内。主体结构施工完成后,应对

21、设置在底板上的线路中线点和高程控制点进行复测。2)暗挖段施工放样、地下导线测量本工程暗挖段,每 6080 米布设一个导线点(中线点),点位埋设采用100mm ×100mm×10mm 大小的钢板,镶直径 2mm、深为 6mm 的铜丝标志,钢板下焊接 14 的螺纹钢,将 钢筋和地板钢筋焊接,砼浇注时注意砼不要覆盖钢板。单导线的角度采用左、右角观测法, 每测回起始方向重新配置度盘。取左(右)角的算术平均值,在左角和右角分别取平均值后, 计算该点的圆周角闭合差:i 平i 平 360i平 -导线点 i盘左观测值的平均值。i平-导线点 i 盘右观测值的平均值。- 为规定的限差,规范规定

22、为 6。 洞内导线测角采用方向观测法,只有两个方向时,可采用左、右角观测法。 由于洞内环境的特殊性,采用以下措施:a、由于施工和光线影响,测角时目标成像不稳定,照准精度低、折光率大,给测角带 来很大的影响。因此,一般应选择大气稳定的夜间或阴天进行测量。b、由于洞内导线边短,仪器对中和目标偏心对测角影响较大,因此测角时,在测回之间 仪器和目标均需重新对中,观测时采用瞄准两次,读数两次的方法。洞内导线边长较短,测量时宜采用级全站仪施测,左、右角各测三测回,左右角平均值之和与 360°较差应小于 6,边长往返观测各两测回,往返观测平均值较差应小于7mm。 地下水准测量a、在导线点钢板上可焊

23、接一个14,长度 1 厘米的钢筋头,钢筋头顶端打磨成半圆体,便于测量时水准尺的放置。b、在隧道贯通前,洞内水准路线均为支水准路线,因此用往返测进行检核,遇横通道贯 通时,左右线进行水准联测,成果平差后作为传递高程的起算数据。c、根据以往施工经验,由于洞内施工场地狭小,运输频繁,施工繁忙,以及水浸蚀,会 对水准标志的稳定性有较大的影响, 故应经常性地由地面水准点向洞内进行重复的水准测量, 根据观测结果来分析水准点是否有变动。d、为了满足洞内衬砌施工的需要,水准点的密度一般要达到安置仪器后,可直接后视水 准点就能进行施工放样而不需要迁站。e、如果地下水准点与导线点不是同一点,根据施工需要亦可另设水

24、准点,以便于施工f 、地下水准测量用等水准测量方法和仪器测量,不符值、闭合差限差满足8 Lmm的精度。三 盾构区间施工测量1、盾构区间施工设计图上所有三维坐标:项目总工、测量技术负责人签名,如有问题及时上报待审批后方可施工;2、盾构机及反力架的安装测量:方法:矩形控制法;精度:轴线方位角误差1 30,机头平面、高程的偏离值±5 mm ;3、盾构机导轨定位测量盾构机导轨测量主要控制导轨的中线与设计隧道中线偏差不能超限,导轨的前后高程与 设计高程不能超限,导轨下面是否坚实平整等。4、盾构机姿态初始测量盾构机姿态初始测量包括测量盾构机的水平偏航角、俯仰角、扭转角。盾构机的水平偏 航角、俯仰

25、角是用来判断盾构机在以后掘进过程中是否在隧道设计中线上前进,扭转度是用 来判断盾构机是否在容许范围内发生扭转。盾构机姿态测量原理。盾构机作为一个近似圆柱的三维体,在开始隧道掘进后我们是不 能直接测量其刀盘的中心坐标的,只能用间接法来推算出其中心坐标。在盾构机壳体内适当 位置上选择观测点就成为必要,这些点既要有利于观测,又有利于保护,并且相互间距离不 能变化。在下图 1中, O点是盾构机刀盘中心点, A 点和 B 点是在盾构机前体与中体交接处, 螺旋机根部下面的两个选点。 C 点和 D 点是螺旋机中段靠下侧的两个点, E 点是盾构机中体 前断面的中心坐标, A 、B、C、D 四点上都贴有测量反射

26、镜片。由A、B、 C、D、O 四点所构成的两个四面体中,测量出每个角点的三维坐标( xi,yi,zi )后,把每个四面体的四个点之 间的相对位置关系和 6 条边的长度 Li 计算出来,作为以后计算的初始值,在以后的掘进施工 过程中, Li 将是不变的常量(假设在隧道掘进过程中盾构机前体不会发生太大形变),通过 测量 A、B、C、D 四点的三维坐标,用( xi,yi,zi )、 Li 就能计算出 O 点的三维坐标。盾构机前体尾左侧面盾构机立体图盾构机刀盘中心右侧面( x5,y 5, z5 ) C x3,y 3, z3)(x2,y 2, z2)观测点放大示意图图 3-1 盾构机姿态测量示意图 用同

27、样的原理, A 、 B、C、D 、E 四点也可以构成两个四面体,相应地E 点的三维坐标也可以求得。由 E、 O 两点的三维坐标和盾构机的绞折角就能计算出盾构机刀盘中心的水平偏 航、垂直偏航,由 A 、B、C、 D 四点的三维坐标就能确定盾构机的扭转角度,从而达到了检 测盾构机的目的。5、盾构导向系统初始测量导向系统初始测量包括:隧道设计中线坐标计算, TCA 托架和后视托架的三维坐标的测 量, VMT 初始参数设置等工作。隧道设计中线坐标计算:将隧道的所有平面曲线要素和高程曲线要素输入 VMT 软件, VMT 将会自动计算出每间隔 1 米里程的隧道中线的三维坐标。 隧道中线坐标需经过其他办法

28、多次复核无误后方可使用。TCA 托架和后视托架的三维坐标的测量: TCA (智能型全站仪)托架上安放全站仪,后视托架上安放后视棱镜。 通过人工测量将 TCA 托架和后视托架的中心位置的三维坐标测量出 来后,作为控制盾构机姿态的起始测量数据。测量示意图见图2。图 3-2 测量示意图位以 g 计算)输入控制计算机“VMT 初始参数设置: 将1心位1置的三维坐标以及后视棱镜的坐标、方位角(单station ”窗口文件里, TCA 定向完成后,启动计算机上的“ advance”,TCA 将照准激光标靶并测量其坐标和方位。根据激光束在标靶上的测量点位置 和激光标靶内的光栅,可以确定激光标靶水平位置和竖直

29、位置,根据激光标靶的双轴测斜传 感器可以确定激光标靶的俯仰角和滚动角, TCA 可以测得其与激光靶的距离,以上资料随推 进千斤顶和中折千斤顶的伸长值及盾尾与管片的净空值(盾尾间隙值)一起经掘进软件计算 和整理,盾构机的位置就以数据和模拟图形的形式显示在控制室的电脑屏幕上。通过对盾构机当前位置与设计位置的综合比较,盾构机操作手可以采取相应措施尽快且平缓地逼近设计 线路。6、隧道内的施工控制测量: 以主控点为依据,用级全站仪测量,测角 2 测回(左右角各 1 测回,均值之和与 360° 的较差小于 6),测边往返各测 2 测回;7、控制点的延伸原则:先施工控制后主控控制,先检测后延伸;8

30、、掘进过程中盾构机的人工姿态测量:提供瞬时盾构机与线路中心平面、高程的偏离值,与自动导向系统所测值相比较更有利 指导掘进。测量方法:拟合法,用全站仪测量“间接点”三维坐标,用小钢尺和水平尺测量 盾构机的旋转、打折、俯仰角的计算参数,可求得盾构机的旋转角、打折角、俯仰角,用拟 合法的计算程序将“间接点”三维坐标转换为盾构机机头中心的三维坐标及其与线路中的设计坐标在线路法线面上的水平偏差和竖直偏差。精度 :偏离值中误差± 15mm 。每隔 200m 测量一次,贯通前 50 米测量一次。其结果及时与自动测量结果进行比较,检查盾构机自动导向 系统是否正常。9、掘进过程中环片姿态测量: 按期对

31、环片进行检测,提供环片姿态信息有利于盾构机操作手操作,保证环片成型后的 质量。方法:横尺法;精度:偏离值中误差±15mm。掘进前 100 米和贯通前 100 米每天测量一次,中间每 510 环测量一次,两次测量将重复 5 环以上。如管片姿态盾构机姿态达极限值的 80应每天测量一次,及时提供信息以便指导掘进和注浆,确保隧道施工质量;10、全站仪( TCA)托架三维坐标的检核与延伸:以激光靶可视程度为基准,在激光靶脱离 TCA 视野之前完成托架前移与人工检测,按照 洞内施工控制测量要求进行;11、掘进过程中随时进行方向检测,若发现问题及时校正。四 竣工测量1、 车站结构净空横断面的竣工测量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论