Mifare系列射频卡读写器的开发_第1页
Mifare系列射频卡读写器的开发_第2页
Mifare系列射频卡读写器的开发_第3页
Mifare系列射频卡读写器的开发_第4页
Mifare系列射频卡读写器的开发_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Mifare系列射频卡读写器的开发作者:huqin    文章来源:本站原创    点击数: 159    更新时间:2006-7-4    1  引言IC卡按卡与外界数据传送的形式不同,分为接触式IC卡和非接触式IC卡。接触式IC卡通过8个触点从读写器获取能量和交换数据;非接触式IC卡通过射频感应从读写器获取能量和交换数据,所以非接触式IC卡又叫射频卡。现在常见的是接触式IC卡,这类卡的读写操作速度较慢,操作也不方便,每次读

2、写时必须把卡正确地插入到读写器的口槽才能完成数据交换。这样,在公交、考勤等需要频繁读写卡的场合就很不方便,而且IC卡的触点暴露在外,容易损坏和搞脏而造成接触不良。非接触式IC卡是根据电磁感应原理产生的。它的读写操作只需将卡片放在读写器附近一定的距离之内就能实现数据交换,无需任何接触,使用非常方便、快捷,不易损坏。因此,在公交、门禁、校园、企事业人事管理等方面有广泛的应用前景。目前我国引进的射频IC卡主要有PHILIPS公司的Mifare卡和ATMEL公司的Temic卡1。而PHILIPS公司的Mifare卡现在是市场的主流产品,应用越来越广。其典型型号为Mifare1 S50,它有1字节E2P

3、ROM用于存放数据,分成16个区,每个区都有自己独立的密码,完善的安全机制使之具有一卡多用的特性2。Mifare卡是一种智能卡(smart card),内建有中央微处理机(MCU)和ASIC等,使卡在安全保密性、认证逻辑、算术运算等微操作控制有序进行。 Mifare卡读写器的设计一般用PHILIPS公司生产的读写模块MCM200或MCM500。随着技术的进步,PHILIPS公司现在生产了功能及性能更好的读卡芯片,我们就是以这种芯片为基础来设计和开发Mifare射频卡读写器。2  工作原理射频IC卡读写器以射频识别技术为核心,读写器内主要使用了1片Mifare卡专用的读写处理芯片(MF

4、 RC500)。它是一个小型的最大操作距离达100mm的Mifare读/写设备的核心器件,其功能包括调制、解调、产生射频信号、安全管理和防碰撞机制。内部结构分为射频区和接口区:射频区内含调制解调器和电源供电电路,直接与天线连接;接口区有与单片机相连的端口,还具有与射频区相连的收/发器、64字节的数据缓冲器、存放3套寄存器初始化文件的E2PROM、存放16套密钥的只写存储器以及进行三次证实和数据加密的密码机、防碰撞处理的防碰撞模块和控制单元。这是与射频卡实现无线通信的核心模块,也是读写器读写Mifare卡的关键接口芯片。读写器工作时,与Mifare卡专用的读卡芯片(MF RC500)相连的天线线

5、圈3不断地向外发出一组固定频率的电磁波(13.56MHz),当有卡靠近时,卡片内有一个LC串联谐振电路,其频率与读写器的发射频率相同,这样在电磁波的激励下,LC谐振电路产生共振,从而使电容充电有了电荷。在这个电容另一端,接有一个单向导电的电子泵,将电容内的电荷送到另一个电容内存储。当电容器充电达到2V时,此电容就作为电源为卡片上的其他电路提供工作电压,将卡内数据发射出去或接收读写器发来的数据与保存。3  系统组成非接触式IC卡应用系统由Mifare卡、发卡器、读卡器和PC管理机组成,如图1所示。其中Mifare卡存放身份号(PIN)等相关数据,由发卡器将密码和数据一次性写入完成。发卡

6、器实际上是一种通用写卡器,直接与PC机的RS-232串行口相连或经过RS-485网络间接与PC机相连,由系统管理员管理,通过PC机设置或选择好要写入的数据,发出写卡命令完成对Mifare卡的数据及密码的写入。与读卡器不同,发卡器往往处于被动地位,不主动读写进入射频能量范围内的射频卡,必须接收PC机的命令才操作,即必须联机才能工作;而读卡器往往可以脱离PC管理机工作。读卡器是主动操作的,只要有非接触式IC卡进入读卡器天线射频能量范围,读卡器便可读写卡中相关指定扇区的数据。图1     典型射频卡应用系统组成框图发卡器与读卡器在硬件设计上大同小异,都是由单片

7、机控制专用读写芯片(MF RC500),再加上一些必要的外围器件组成。图2为读卡器硬件系统组成。读卡器用P89C58BP单片机作主控制器;MF RC500射频芯片作为单片机与射频卡通讯的中介;74HC595作显示驱动器驱动LED数码显示器,PS/2总线作为通用编码键盘接口,键盘与LED显示器作为人机交互接口;AT24C256串行E2PROM作数据存储器;DS1302串行时钟芯片作硬件实时时钟;MAX232或MAX485作串口信号转换;DS1232作看门狗定时器;Q9012三极管作提示报警信号驱动,有卡进入并读卡成功指示灯闪一下,喇叭叫一声。Mifare射频卡进入距离射频天线100mm内,读卡器

8、就可以读到卡中的数据。读卡器读到Mifare射频卡中的数据后,系统单片机要将所读数据及刷卡的时间一起存入存储器AT24C256,并在LED显示器上显示卡数据。没有卡进入读卡器工作范围时,系统读出实时时钟芯片中的时间,在显示器上显示当前时间。读卡出错,显示出错标志。主控器P89C58BP内部有32KB的Flash存储器,256字节RAM,可方便反复擦写、修改程序,同时,由于外部不用扩展程序存储器,可以简化电路设计,减小读卡器的尺寸,同时有较多的I/O口提供给系统使用。图2     读卡器硬件系统组成4  硬件设计4.1  射频芯片MF

9、RC500是Philips公司为Mifare卡设计的专用读卡芯片,它与非接触式IC卡之间通讯标准兼容ISO14443A,其功能框图如图3所示4。图3     MF RC500功能框图它内部包括微控制器接口单元、模拟信号处理单元和ISO14443A规定的协议处理单元,以及Mifare卡特殊的Crypto1安全密钥存储单元。它可以与所有兼容Intel或Motorola总线的微控制器实现8位并行“无缝”接口(直接连接),其内部还具有64个字节的先进先出(FIFO)队列,可以和微控制器之间高速传输数据;其片内的ISO14443A协议处理单元包括状态和控制单元、数

10、据转换处理单元;片内的模拟单元能够将数字信号处理单元的数据信息调制并发送到天线中,也可以将天线接收到的信息解调成数字信号传送给协议处理单元,带有一定的天线驱动能力。MF RC500的工作频率为13.56MHz,它可以在有效的发射空间内形成一个13.56MHz的交变电磁场,为处于发射区域内的非接触式IC卡提供能量,同时卡或RC500需要传送的数据信息也被调制在这个频率上。RC500与非接触式IC卡之间能量的传递和数据双向传输的过程是初级和次级两个线圈之间的耦合过程,从读卡器发射给卡的数据信息在调制前采用弥勒(Miller)编码,而从卡到读卡器的数据信息采用曼彻斯特编码。4.2  实时时

11、钟刷卡时要记录刷卡的时间,用外接硬件实时时钟芯片的办法,为系统提供一个准确可靠的时钟,用3V备用电池保证在系统掉电时也能正常走时。我们选用体积小、接口简单的实时时钟芯片DS1302。它是美国DALLAS公司推出的低功耗串行通信接口专用芯片,采用3线串行方式与单片机进行数据通信。DS1302片内还有31字节的静态RAM,可自动进行闰年补偿。数据可按单字节方式或多字节突发方式传送。DS1302为8脚DIP封装5,与P89C58串行接口用3根线,SCLK接CPU的P2.2,同步时钟输入;RST接CPU的P2.3,通信允许信号;I/O接CPU的P2.4,串行数据输入输出。此外,X1,X2接32768H

12、z的石英晶振;Vcc1接3V备用锂电池,主电源接Vcc2。每个数据传输都是先送命令字节,随后才是数据。单字节方式传送时,在RST=1期间(RST必须为1数据传送才有效),先送命令字节,紧接着发送一个字节的数据,DS1302在接收到命令字节后自动将数据写入指定的内部地址或从该地址读取数据。写数据在SCLK的上升沿有效,读数据是在SCLK的下降沿有效。多字节突发方式传送时,在命令字节后,是多个字节的数据。在RST=1期间,DS1302接收到命令字节后,接着进行8个字节日历时钟数据或31个字节内部RAM单元数据的读写操作。DS1302内部寄存器地址中,00H-06H分别对应存放秒、分、时、日、月、星

13、期、和年信息的寄存器,07H为写保护控制寄存器,08H为电池充电控制寄存器。时钟数据以BCD码格式存放在00H-06H这7个寄存器中。在DS1302中串行数据传送都是低位在前,高位在后,这与AT24C256的数据传送正好相反。4.3  串行存储器我们用AT24C256作数据存储器。AT24C256是串行E2PROM存储器,支持I2C总线数据传输协议,32KB存储器容量,用两根线与CPU构成串行接口。SDA是双向数据线,接CPU的P2.1;SCL是时钟线,接CPU的P2.0;这两根线必须接上拉电阻。WP是写保护线,一般接地,表示允许读写操作。A0、A1是地址线,通过这二根地址线CPU最

14、多可寻址4个AT24C256器件,4个芯片都有固定的地址,分别对应A0、A1为00到11,在此二根地址线上可扩充13片AT24C256串行E2PROM存储器。串行E2PROM读写格式和操作时序如图4所示。图4     串行E2PROM读写格式和操作时序写数据到AT24C256有字节写和页面写两种方式。在字节写模式下,主器件(单片机)发送起始信号和从器件(AT24C256)地址信息,在从器件送回应答信号后,主器件发送两个8位地址字节给AT24C256,主器件在收到从器件的应答信号后,再发送数据到被寻址的存储单元。AT24C256再次应答,并在主器件产生停止

15、信号后开始内部数据的擦写周期,在内部擦写过程中AT24C256不再应答主器件的任何请求。页写模式下一次最多可以写入64个字节数据。从AT24C256中读数据有三种方式,即当前地址读、随机读和连续读。如随机读,允许主器件对E2PROM的任意地址进行读操作。分两步进行,首先主器件发起始信号、器件地址和两字节的存储器地址执行一个伪写操作,在AT24C256应答之后,主器件再发起始信号和器件地址,AT24C256响应并发应答信号,然后输出8位数据,主器件收到数据后发停止信号结束本次操作。连续读可用随机读开始,在收到AT24C256发来的8位数据后,主器件不发停止信号,而发应答信号, AT24C256收

16、到主器件的应答信号后,又传下一个地址的数据,一直进行下去,直到主器件发停止信号为止。5  程序设计5.1  单片机主程序流程图单片机的程序包括:IC卡读/写/密码验证/擦除操作程序,与RC500通信中断处理程序,键盘中断处理程序,与PC机通信中断处理程序,显示程序及存储器读写程序等。读卡器的主程序流程图如图5所示:图5     读卡器的主程序流程图5.2  读/写卡程序设计读写卡过程是一个很复杂的程序执行过程,要执行一系列的操作指令,调用多个C51函数。包括装载密码,询卡,防冲突,选卡,验证密码,读写卡,停卡。这一系列的操作

17、必须按固定的顺序进行。在没有Mifare卡进入射频天线有效范围时,在低5位显示当前时钟,当有Mifare卡进入到射频天线的有效范围,读卡程序验证卡及密码成功后,将卡号和读卡时间及相关数据作为一条记录存入E2PROM存储器中,并在LED显示器高5位上显示卡号。程序设计采用单片机汇编语言和KeilC51混合编程。看门狗定时器中断服务程序采用汇编语言编写,其它程序采用C语言编写。程序的每一部分按模块化设计成一个文件,单独调试通过后,再在KeilC51环境下加入到工程文件中汇编生成HEX文件,用仿真器进行仿真通过后,写入P89C58BP芯片中脱离仿真器运行。6  结束语本文设计的Mifare

18、系列射频卡读写器能够读写多种Mifare系列射频卡,如Mifare 1 S50、Mifare Light和Mifare Pro等,读写距离在10cm范围内。该读写器操作方便灵活,只要通过计算机串口按规定协议发送命令给它即可完成读卡、写卡、取消和更改密码等操作;也可设置为脱离计算机独立工作方式,必要时再将所存储的记录数据上传到上位机供其处理。本读写器已经实际应用在长沙某非接触式IC卡预付费电度表的售电系统中,系统运行良好、可靠性高。实际应用中证明:此射频卡读写器系统读写非接触式IC卡片迅速、方便、可靠、安全、稳定,深受用户欢迎。有足够的优势取代目前仍使用磁卡和接触式IC卡读写器的应用,具有巨大的

19、市场竞争力和广阔的发展前景。基于MF RC500的射频识别读写器设计作者:huqin    文章来源:本站原创    点击数: 168    更新时间:2006-7-4    摘要:主要介绍一种基于Philips公司的MF RC500的射频识别读写器的设计:首先介绍系统的组成以及MF RC500的特性,接着给出天线的设计规范,最后给出MCU 89C52与MF RC500的接口原理图、对M

20、ifare卡操作流程以及及读卡的程序。该系统选用Mifare卡作为系统的应答器(PICC),电路稳定,系统运行正常。    关键词:射频识别技术 应答器PICC 读写器PCD Mifare卡 MF RC500    与传统的接触式IC卡、磁卡相比较,利用射频识别技术(radio frequncy identification)开发的非接触式IC识别器,在系统寿命、防监听、防解密等性能上具有很大的优势。利用MCU 89C52、MF

21、0;RC500、Mifare卡等构建非接触式IC读写器,并在该读写器基础上能很容易地开发出适用于各方面的自动识别系统。1 MF RC500介绍    MF RC500是应用于13.56MHz非接触式通信中高集成读卡IC系列中的一员。该读卡IC系列利用先进的调制和解调概念,完全集成了在13.56MHz下所有类型的被动非接触式通信方式和协议。MF RC500支持ISO14443A所有的层,内部的发送器部分不需要增加有源电路就能够直接驱动近操作距离的天线(可达100mm);接收器部分提供一个坚固而有效的解调和解码电路,用

22、于ISO14443兼容的应答器信号;数字部分处理ISO14443A帧和错误检测(奇偶&CRC)。此外,它还支持快速CRYPTO1加密算法,用于验证Mifare系列产品。方便的并行接口可直接连接到任何8位微处理器,给读卡器/终端的设计提供了极大的灵活性。2 系统组成    从图1可以看出,系统主要由MCU、时钟芯片、MFRC500、液晶屏、看门狗以及485通信模块组成。系统的工作方式主要是,先由MCU控制MF RC500驱动天线对Mifare卡,也就是应答器(PICC),进行读写操作。然后,根据所得的数据对其它接口器件,如液晶屏

23、、EEPROM、时钟芯片等,进行响应操作。最后,与PC机之间进行通信,把数据传给上位机。    MCU采用89C52,是因为89C52开发简单,运行稳定。EEPROM采用24C256,用于存储系统的数据。24C256是串口操作方式,是一种性价比较高的存储芯片。液晶屏采用带字库的ST7920,是因为它是并口操作方式的,操作方便。时钟芯片采用DS12C887。DS12C887是Dallas公司生产的新型产品,内置电池,可连续使用10年,可以方便记录事件的发生时间。为了防止系统“死机”,使用x5045作为看门狗。X5045是串口工作方式,内置EEPROM,可用

24、来存储一些系统参数。与上位机的通信采用RS-485通信模块,通信距离可以达到1000m左右。    整个系统由24V电源供电,再由稳压模块7805稳压成5V的电源。由于7805的工作热量很高,故在7805上安置一个散热片。3 系统工作原理    系统数据存储在无源Mifare卡,也就是PICC中。从图2可以看出,PCD的主要任务是传输能量给PICC,并建立与之的通信。PICC是由一个电子数据作载体,通常由单个微型芯片以及用作天线的大面积线圈等组成;而PCD产生高频的强电磁场,这种磁场穿过线圈横截面和线圈周

25、围的空间。因为MF RC500提供的频率为13.56MHz,所以其波长比PCD的天线和PICC之间的距离大好多倍,可以把PICC到天线之间的电磁场当作简单的交变磁场来对待。PCD天线线圈发射磁场的一小部分磁力线穿过PICC的天线线圈,接着PICC的天线线圈和电容器C构成振荡回路,调频到PCD的发射频率。回路的谐振使PICC线圈的电压达到最大值,将其整流后作为数据载体(微型芯片)的电源。PICC启动之后 ,可与PCD之间进行数据通信。    如上所述可以看出,PCD的性能与天线的参数有着直接的关系。在对天线的性能进行优化之后,PCD的读

26、卡距离可以达到10cm。4 PCD的天线设计    由于MF RC500的频率是13.56MHz,属于短波段,因此可以采用小环天线。小环天线有方型、圆形、椭圆型、三角型等,本系统采用方型天线。天线的最大几何尺寸同工作波长之间没有一个严格的界限,一般定义为:L/1/(2)  (1)式(1)中,L是天线的最大尺寸,是工作波长。对于13.6MHz的系统来说,天线的最大尺寸在50cm左右。    在天线设计中,品质因数Q是一个非常重要的参数。对于电感耦合式射频识别系统的PCD天线来说

27、,较高品质因数的值会使天线线圈中的电流强度大些,由此改善对PICC的功率传送。品质因数的计算公式为:Q=(2f0·Lcoil)/Rcoil   (2)式(2)中的f0是工作频率,Lcoil是天线的尺寸,Rcoil是天线的半径。通过品质因数可以很容易计算出天线的带宽:B=f0/Q    (3)    从式(3)中可以看出,天线的传输带宽与品质因数成反比关系。因此,过高的品质因数会导致带宽缩小。从而减弱PCD的调制边带,会导致PCD无法与卡通信。一般系统的最佳品质因数为1030,

28、最大值不能超过60。5 MF RC500与MCU 89C52的部分接口电路    图3为MF RC500与MCU的接口原理。由图3可以看出,本系统采用中断(INT1)工作模式,即MCU利用MFRC500提供中断信息对其进行控制。另外,根据系统的需要,可以采用查询方式对MF RC500进行操作。6 对Mifarel卡操作流程    整个系统的工作由对Mifare卡操作和系统后台处理两大部分组成。由于篇幅有限,本文只介绍对Mifare卡操作流程。Mifare卡

29、的操作可以分为以下几项。(1)复位请求    当一张Mifare卡片处在卡处读写器的天线的工作范围之内时,程序员控制读写器向卡片发出REQUEST all(或REQUEST std)命令。卡片的ATR将启动,将卡片Block 0中的卡片类型(TagType)号共2个字节传送给读写器,建立卡片与读写器的第一步通信联络。    如果不进行得位请求操作,读写器对卡片的其它操作将不会进行。(2)反碰撞操作    如果有多张Mifare卡片处在卡片读写器的

30、天线的工作范围之内时,PCD将首先与每一张卡片进行通信,取得每一张卡片的系列号。由于每一张Mifare卡片都具有其唯一的序列号,决不会相同,因此PCD根据卡片的序列号来保证一次只对一张卡操作。该操作PCD得到PICC的返回值为卡的序列号。(3)卡选择操作    完成了上述二个步骤之后,PCD必须对卡片进行选择操作。执行操作后,返回卡上的SIZE字节。(4)认证操作    经过上述三个步骤,在确认已经选择了一张卡片时,PCD在对卡进行读写操作之前,必须对卡片上已经设置的密码进行认证。如果匹配,才允许进一步的读写操作。

31、(5)读写操作    对卡的最后操作是读、写、增值、减值、存储和传送等操作。7 读卡程序    根据上面的流程,采用基于Keil C的C语言进行编程,程序如下:char M500Reset(void) char status;RC500RST=0; /RC500在RSTPD脚由高变低的时候复位delay_1ms(25); /注意延时的长度,本系统的晶振频率是11.0592MHzRC500RST=1;delay_50us(200);RC500RST

32、=0;delay_50us(50);.return status;char M500Config(void)/对RC500的寄存器进行初始化char M500PiccCommonRequest(unsigned char req_code,unsigned char *atq)    /RC500发送请求。req_code是请求模式,一共有request all和Request std两种模式。Request all指令是非连续性的读卡指令,只读一次。但有

33、个例外,当某一次Request all指令读卡片失败时,例如,卡片没能通过密码认证或其它原因而出错时,Request all指令将连续地读卡,直到读卡成功才进入非连续性的读卡模式。Request std指令的使用和Request all指令刚巧相反。Request std指令是连续性的读卡指令。当某一张卡片在MCM之天线的有效的工作范围(距离)内,Request std指令在成功地读取这一张卡片之后,进入MCM对卡片的其它操作。如果其它操作完成之后 ,程序员又将MCM进入Request std指令操作,则Reque

34、st std指令将连续地再次进行读卡操作,而不管这些片卡是否被拿卡。只要有一张卡片进入MCM之天线的有效的工作范围(范围)内,Request std指令将始终连续地再次进行读卡操作。对于Mifare1卡,该函数反回值为0004H。char M500PiccCascAnticoll(unsigned char bcnt,unsignedchar *snr) /反碰撞函数,得到一张卡的序列号/存入snr中char M500PiccCascSelect(unsigned char *snr,unsig

35、ned char *sak) /选中snr指定的卡,对于Mifarel卡返回值为0008H,值存入sak中char M500PiccAuthKey(unsigned char auth_mode,unsigned char *snr,unsigned char *keys,unsigned char block)/这是三轮认证函数,整个过程包括:先将所要访问的区密码加密(如区0的初始密码为6个FFH),再将加密后的密码通过Loadkey存入MF RC500的Key缓

36、存中,接着进行认证。Char M500PiccRead(unsigned char addr,unsigned char *_data) /最后读卡,读到的数据存入_data中结语    本文主要介绍一种基于MF RC500的射频识别读写器的设计方法。试验证明系统运行稳定,在此读写器的基础上,只要稍加屐就能开发成不同的射频识别应用系统,如考勤系统、门禁 系统、公交车收费系统等高集成度TYPE A读写器芯片MF RC500及其应用作者:huqin 

37、   文章来源:本站原创    点击数: 97    更新时间:2006-7-4    摘要:介绍了高集成度TYPE A读写器芯片MF RC500的内部电路结构,并对其内部寄存器的有关命令及加密算法等功能做了较详细的阐述,最后在此基础上给出了MF RC500的典型应用电路。       关键词:TYPE A;读写器;FIFO;命令;CRYPTO1    &#

38、160; 引言  是公司生产的高集成度 读写器芯片。其主要性能如下:载波频率为;集成了编码调制和解调解码的收发电路;天线驱动电路仅需很少的外围元件,有效距离可达;内部集成有并行接口控制电路,可自动检测外部微控制器()的接口类型;具有内部地址锁存和线,可以很方便地与接口。集成有字节的收发缓存器;内部寄存器、命令集、加密算法可支持 标准的各项功能,同时支持类卡的有关协议。数字、模拟、发送电路都有各自独立的供电电源。基于以上特点,用 极易设计 型卡的读写器,可广泛用于非接触式公共电话、仪器仪表、非接触式手持终端等领域。   引脚功能  为脚

39、封装,需说明的是:某些引脚(带号)依据其所用(微控制器)的接口情况具有不同功能。      工作原理  的内部电路框图如图所示,它由并行接口及控制电路、密钥存贮及加密算法、状态机与寄存器、数据处理电路、模拟电路调制、解调及输出驱动电路等组成。  寄存器设置  芯片的内部寄存器按页分配,并通过相应寻址方法获得地址。内部寄存器共分页,每页有个寄存器,每页的第一个寄存器称为页寄存器,用于选择该寄存器页。每个寄存器由位组成,其位特性有四种:读写()、只读()、仅写()和动态()。其中属性位可由微控制器读写,也可以

40、在执行实际命令后自动由内部状态机改变位值。 微控制器通过对内部寄存器的写和读,可以预置和读出系统运行状况。寄存器在芯片复位状态为其预置初始值。了解内部寄存器的设置对于软件编程至关重要.  并行接口 芯片可直接支持各种微控制器(),也可直接和机的增强型并行接口()相连接,每次上电()或硬启动()后,芯片会复原其并行接口模式并检测当前的接口类型,通常用检测控制引脚逻辑电平的方法来识别接口,并利用固定引脚连接和初始化相结合的方法实现正确的接口。图给出了相应的连接接线图。  存贮器 的共有块,每块字节。存贮区分为四部分:第一部分为块,属性为只读,用于保存产品的有关信息;第二部分为块和块,它们具有读写属性,用于存放寄存器初始化启动文件;第三部分从块至块,用于存放寄存器初始化文件,属性为读写;第四部分从块至块,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论