钢管混凝土拱桥的施工方法和结构设计_第1页
钢管混凝土拱桥的施工方法和结构设计_第2页
钢管混凝土拱桥的施工方法和结构设计_第3页
钢管混凝土拱桥的施工方法和结构设计_第4页
钢管混凝土拱桥的施工方法和结构设计_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、钢管混凝土拱桥的施工方法钢管砼结构,由于能通过互补使钢管和混凝土单独受力的弱点得以削弱甚至消除,管内混凝土可增强管壁的稳定性,钢管对混凝土的套箍作用,使砼处于三向受力状态,既提高了混凝土的承载力,又增大了其极限压缩应变,所以自钢管砼结构问世以来,是桥梁建筑业发展的一项新技术,具有自重轻、强度大、抗变形能力强的优点,因而得到突飞猛进的发展。在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。1 拱肋钢管的加工制作拱肋加工前,应依理论设计拱轴座标和预留拱度值,经计算分析后放样,钢管拱肋骨架的弧线采

2、用直缝焊接管时,通常焊成1.2-2.0m的基本直线管节;当采用螺旋焊接管时,一般焊成12.020m弧形管节。对于桁式拱肋的钢管骨架,再放样试拼,焊成10m左右的桁式拱肋单元,经厂内试拼合格后即可出厂。具体工艺流程为:选材料进场 材料分类 材质确认和检验 划线与标记移植 编号码 下料 坡口加工 钢管卷制 组圆、调圆 焊接 非坡口检验 附件装配、焊接 单节终检 组成10m左右的大节桁式拱肋 焊接 无损检验 大节桁式拱肋终检 1:1大样拼装 检验防腐处理 出厂。当拱肋截面为组合型时,应在胎模支架上组焊骨架一次成型,经尺寸检验和校正合格后,先焊上、下两面,再焊两侧面(由两端向中间施焊)。焊接采用坡口对

3、焊,纵焊缝设在腔内,上、下管环缝相互错开。在平台上按1:1放样时,应将焊缝的收缩变形考虑在内。为保证各节钢管或其组合骨架拼组后符合设计线型,可在各节端部预留1cm左右的富余量,待拼装时根据实际情况将富余部分切除。钢管焊接施工以“gbjd0583、钢结构施工和施工及验收规范”的规定为标准。焊缝均按设计要求全部做超声波探伤检查和x射线抽样检查(抽样率大于5%)。焊缝质量应达到二级质量标准的要求。2 钢管混凝土拱桥的架设2.1无支架吊装法2.1.1缆索吊机斜拉扣挂悬拼法 具体做法与其他拱肋的架设相似,只是钢管混凝土拱肋无支架架设方案用于较大跨度,它可根据吊机能力把钢管拱肋合成几大段进行分段对称吊装,

4、并随时用扣索和缆风绳锚固,稳定在桥位上,最后合拢。如净跨度150m四川宜宾马鸣溪金沙江大桥,为钢筋混凝土箱拱,分五段吊装,吊重700kn。广西邕宁邕江大桥,主跨312m的钢管混凝土劲性骨架箱肋拱,每根拱肋的钢管骨架分9段吊装,吊重590kn。四川万县长江大桥,跨径420m的钢管混凝土劲性骨架上承式拱桥,分36段吊装,吊重612.5kn。缆索吊机斜拉扣挂悬拼法施工是我国修建大跨度拱桥的主要方法之一。施工理论成熟,施工体系结构简单,施工调整与控制较方便。但这种方法起吊端要有一定的施工场地,缆索跨度较桥跨要大,用缆索较多,主塔架与扣索塔架相互分开,存在受压杆稳定要求塔高不能过高,并且要设置各种缆风索

5、而占地面积较大。2.1.2整体(或大段)吊装施工方法整体吊装施工方法也称为三大段吊装施工方法。主跨分三段,边段利用鹰架悬臂拼装或采用龙门吊机与起吊塔架共同起吊就位,同时调整好拱肋空间位置,中段两肋连同横撑在岸上拼装,用临时拉杆拉住,整体浮运到桥位,利用鹰架和主拱拱肋悬臂段设置提升设备将中段提升就位,解除中段临时系杆,然后合拢,如图1所示。这种施工方法,美国的弗里蒙特桥曾采用,该桥为最长跨度悬臂系杆拱桥主跨为382.65m,1973年建成。三段吊装法,工期短,将大量的现场工作转移到工厂内,能确保拱轴线及质量,不受桥头拆迁控制,占地较少,对城市建桥尤为重要;与引桥施工不发生干扰,机具设备少,临设材

6、料可以大量回收,节省投资;技术可行,且施工不复杂,安全度校高。但该施工方法,长大段钢管拱肋的运输受水位及河道的限制;工厂制造需要有较大的场地和下河码头等。这种施工方法在国内尚无先例。213双塔缆索吊机法 该缆索吊机塔架之缆塔和扣塔合二为一,并于前塔上附加后塔形成空间框架结构,故称为双塔缆索吊机施工法。如图2: 这种施工方法,塔架刚度较大,可不设缆风。吊装操作方法为:拼装缆索吊和塔架,安装缆索吊机缆索及机械部分,试吊合格后投入使用;工厂内制造钢管拱桁架节段并予以试样,合乎要求后按顺序下河运到桥轴位处抛锚定位;对称按序逐节段起吊、对位、扣索、连接、调整拱肋空间位置,挂锚索,对称同步张拉相应扣、锚索

7、;调整与控制塔架水平位移调整与控制拱肋各节段的高程及平面位置;全面检查与调整拱肋轴线控制点高程及平面位置。焊接各节段接头处外包钢板。这种施工方法为缆索吊机的特例,具有一般缆索吊机施工方法的优点,但因不设缆风索,可大幅压缩桥址区红线外征地,节省投资。但是缆塔和扣索塔合二为一,使两者之间的变形连为一体,相互影响,施工调整与控制较为不便,体系构造复杂,受力不很直观。我国江汉三桥下承式钢管拱桁架系杆无铰拱桥采用此方法施工,主跨280m。22转体施工法221平面转体施工法 (1)有平衡重转体施工,平衡重转体主要由平衡体系,转动体系(转轴及环道)和位控体系三部分组成。其平衡体系一般利用桥台或配重来平衡主拱

8、,转动体系为拱脚后的球铰;同时在球铰周围布置千斤顶或卷扬机使转动轴转动,转动轴上的半跨拱肋随之徐徐转动,直到就位。如图3所示。我国的黄柏河、下牢溪大桥,跨径均为160m采用此法施工,转体重量达36000kn。(2)无平衡转体施工,是采用锚碇体系平衡悬臂主拱,取消平衡重,而节省材料。锚碇体系由作为压杆的主柱,作为撑梁的引桥主梁以及后锚等部分组成,如图4所示。 2.2.2竖向转体施工法竖向转体是根据桥位的情况,采用在桥轴线竖向而预制半拱肋,然后再从两边向上或向下转体施工就位的施工方法,一般用在小跨径的拱桥上。如图5所示。三峡莲沱大桥采用此法施工,净跨48.3m+114m+48.3m钢管混凝土带悬臂

9、中承式刚架系杆拱桥。2.2.3双向转体施工当桥位处地形不允许拱肋在桥位的设计平面或轴线竖面预制时,可采用竖转加平转施工。其转动设竖向转轴和平转体系满足双向转体施工。我国的河南安阳文峰路立交桥采用竖转加平转法施工,主跨为135m的钢管混凝土刚架系杆拱;广州丫髻沙大桥,主跨为360m带悬臂的中承式刚架系杆钢管混凝土拱桥。2.3有支架吊装法根据桥位处的地形及设计情况可采用有支架吊装法进行钢管主拱肋的架设。拱肋的吊装仍采用缆索系统,不同之处是在每一拼接处设置支架,使拱肋的连接和焊接在支架上进行。支架的设置按拱肋的轴线和段接头位置及高程,在精确定位后,就每个段接头的高度设计相应的支架高度(该高度考虑了支

10、架、支承结构的变形和施工预拱度),经计算确定支架的形式和材料,满足强度、稳定及刚度要求,支承处圆弧和坡度应和该处的拱肋设计完全吻合,以保证较大的支承面积和钢管拱肋的稳定。吊装时用索道吊运到位初步控制合格后,拱肋的一端采用焊搭板螺栓联接,另一端用两道临时缆风护设稳定,合拢段在准确测量出实际的长度和待合拢段拱肋的长度根据实际将多余的长度割掉后按吊装顺序吊装,到位后两端精确对位连接。吊装顺序如图6所示。采用此法施工的有延安王家坪大桥净跨190m的中承式钢管混凝土拱桥,天津塘沽彩虹大桥主桥3跨168m下承式系杆钢管混凝土拱桥等。3 钢管拱混凝土的灌注3.1拱肋钢管内混凝土的灌注钢管混凝土拱桥钢管内的混

11、凝土优先采用泵送顶升法灌注,对小跨径的钢管混凝土拱桥也可采用浇注捣固法。拱肋钢管内混凝土一般采用微膨胀混凝土,要有一定的流动性,混凝土中所用的各中外掺剂,如减水剂、微膨胀剂、粉煤灰等品种的选用和掺用量均应通过试验确定。泵送混凝土坍落度一般为1822cm。泵送顶升法采用混凝土输送泵将混凝土从低处向高处顶升,当加载程序是从拱脚往拱顶一次浇注时,从两端拱脚向拱顶泵送,拱顶附近开排气孔。当拱肋钢管较长时,可采用“分仓法”进行泵送顶压,每隔仓段顶部设排气孔,如图7所示。对于单管拱肋钢管,只要同时对称灌注即可,组合截面应先灌注上、下缀板仓由跨中自拱脚同时浇注 下层内侧钢管(待达到要求的强度后) 下层外侧钢

12、管 上层内侧钢管 上层外侧钢管 拱脚实腹段混凝土。如图8所示。 泵送混凝土时两边泵送速度应加强协调,尽量对称顶升,特别是接近拱顶时要注意避免一边上升过快越过拱顶,引起钢管骨架的纵向振动。人工浇灌时,混凝土从浇注段的上端灌入,但混凝土落差不宜太大以免混凝土离析。在钢管上开浇灌孔,孔径一般为200mm,通过漏斗下料,振动可用插入式振动棒振捣。为此应在钢管上开设振捣孔,一般振捣孔和浇灌孔相隔设置,振捣孔直径视振动棒大小而定,一般为150mm;浇灌孔开孔距离不应大于振动器的有效工作范围和23m的水平距离。混凝土通过振动孔和浇灌孔时可稍溢出,然后在开口盖板原位点焊,使混凝土强度达到设计强度的50%后,再

13、按设计要求进行补焊。混凝土在灌注时,钢管内混凝土温度控制在60以下,以免微膨胀混凝土失效。钢管内灌注混凝土的密实度可采用敲击钢管和超声波检测。若混凝土不密实的部位,应采用钻孔压浆法进行补强。当缺陷较小时,压环氧树脂;当缺陷较大时,可压高标号砂浆,压浆后将钻孔补强焊牢。 3.2钢管作为劲性骨架外包混凝土的灌注 用钢管作为劲性骨架的大跨度拱桥近年较多,如四川内江新龙坳大桥主跨净跨117.8m,江西德兴钢矿太白大桥净跨130m,广西邕宁邕江大桥计算跨径312m均为钢管混凝土劲性骨架桥,架设后管外包混凝土形成箱型拱肋。四川万县大桥主桥净跨420m,为钢管劲性骨架,该桥为世界同类桥中跨度最大者。钢管劲性

14、骨架已形成一个稳定的整体结构,为吊装模板及施工脚手架提供了方便,可以按照设计要求的加载程序分段,分层地灌注拱圈砼,并进行拱上结构施工。4 钢管防锈处理4.1钢管除锈 钢管除锈通常采用机械法中的喷砂除锈,抛丸除锈辅以化学清洗。除锈方法与除锈等级与设计采用的防腐材料有关。一般要求钢管外侧表面无油污、氧化皮、锈迹等杂物,表面呈钢材金属光泽,以确保除锈质量。4.2防腐保护层 钢管外露面需要防腐处理,常用的方法有金属涂层和非金属涂层,现介绍如下:4.2.1金属涂层(1)阴极防腐涂层,这类涂层若存在孔隙,则会在涂层与钢材表面形成电池引起腐蚀,施工难度大,工艺复杂,难以保证质量,一般不采用。镀锡层等属于阴极

15、防腐。 (2)阳极防腐涂层,锌、铝等属于阳极防腐涂层,其防腐效果较好,也称为长效复合防涂层,主要工序为先热喷一定厚度的铝镁合金,再以锌磺环氧树脂作封闭层,面层用氯化橡胶涂敷,保护层的总厚度约300m。其中铝镁合金层厚200m,其余2层为100m,此法一次费用较高,有关资料表明,其防锈年限可达30年以上,以长远效益看,用长效复合保护层可降低后期的维修保养工作。 目前先进的gcm特种长效金属防腐防护系统,有关资料表明,防锈年限可达50年,这种防护系统有以下显著特点: gcm防护系统由密闭层、强度层、耐候层三层结构构成,三层总厚度一般在1000m以上,使其成为防腐、防护系统。 gcm防护系统在固化时

16、系统自身产生收缩,使之紧固于金属表面,不会因产生“滑移”、“脱层”、“刺伤”而使防护失败。gcm防护系统施工方便,不需高压喷砂、除锈的施工程序。 gcm防护系统的耐候层具有优异的抗紫外线搞感化性能、满足长效防腐、防护要求。gcm防护系统具有优异的绝缘功效。 gcm防护系统的颜色可根据桥地处周围环境选择合适的颜色,是目前较理想防腐、防护系统。422非金属涂层 非金属涂层又分无机涂层和有机涂层。无机涂层包括化学转涂层、珐琅、玻璃的水泥等。有机涂层包括塑料、涂料和防锈油。非金属涂层在建成的钢管混凝土拱桥防护中应用较多。5 吊杆安装 吊杆一般用在钢管混凝土拱桥中承式和下承式桥中,常用材料有圆钢、高强钢

17、丝和钢绞线,锚头用冷铸锚或镦头锚,夹片群锚使用较少。吊杆的构造同斜拉桥中的斜拉索构造均用定型成套产品。 钢管拱肋在制作时将吊杆上端的导管、螺旋钢筋、垫板一并设置在拱肋中,吊杆下端的导管、垫板应预埋在吊杆横梁中。 为了保证桥面标高的正确位置,待拱肋架设调整完成后,准确测量拱肋上垫板的标高,然后计算吊杆的下料长度,在工厂加工成型运到工地进行安装。6 桥面板安装 桥面板的安装按设计加载程序进行吊装、轴线对称、两端对称,同一般中承式和下承式桥面板安装。7 结语 钢管混凝土拱桥是近年发展起来的,重量轻、结构合理,发挥了两种材料优点,有发展前景。 钢管混凝土拱桥架设方案的选择,应根据桥址处地形、设计要求进

18、行方案比选,确定合理的架设方案。 钢管内混凝土的灌注顺序应按加载程序进行,对拱肋的灌注应优先考虑泵送顶升法。 钢管防腐防护处理采用gcm特种长效金属防腐防护系统,工艺简单,费用低,防护效果好。 吊杆防护安装采用pe防护,两端锚头在工厂加工镦头,高空作业简单,施工方便。 钢管混凝土拱桥结构设计探讨2009-05-11 16:50 【大 中 小】【打印】【我要纠错】摘 要:钢管混凝土拱桥在我国的应用发展很快。本文对刚架系杆拱桥型、助供横向结构、拱助我面设计和桥面系构造等问题进行探讨。关键词:钢管混凝土;拱桥结构设计;探讨管混凝土拱桥近十年来在我国发展迅速,随着数量的增多,跨径与规模也不断增大,分布

19、区域也越来越广,除了钢管混凝土拱桥具有材料强度高、施工方便、造型美观等优点的原因外,与我国正处于大规模的交通基础设施建设时期的大环境有密切的关系2。本文将根据钢管混凝土拱桥在我国的应用情况与近几年的发展趋势,对结构的合理设计进行定性的讨论。一、刚架系杆拱桥型钢管混凝土拱桥结构形式丰富多样,承载形式上、中、不承式均有。按拱的推力,又可分为有推力供和无推力供。无推力供又有拱架组合体系和刚架系杯供。钢管混凝土拱桥以中下承式为主,有推力拱和元推力拱均占相当的比重。在无推力拱中,以刚架系杆拱为主。这些都是钢管混凝土拱桥的构造特点,与我国传统的石拱桥、钢管混凝土拱桥均有明显的不同。刚架系杆拱是在钢管混凝土

20、拱桥中出现的拱桥新的结构形式。我国建成的第一座钢管混凝土拱桥-四川旺苍东河大桥采用的就是刚架系杆拱。与拱架组合体系不同,刚架系杆供中拱助与桥墩团结,不设支座,采用预应力钢绞线作为拉杆来平衡换的推力,拉杆独立于桥面系之外,不参与桥面系受力,而桥面系为局部受力构件。这种结构由于拱和墩连接处为刚结点,属刚架结构,又带有系杆,故称之为刚架系杆拱。刚架系杯拱为超静定结构,桥梁上部、下部以及基础甚至地基连成一体,结构的超静定次数较多,受力复杂。由于其系杆刚度与供梁组合体系中的系杯梁刚度相比小很多,特别对于大跨径桥梁,系杆拉力增量将产生很大的变形,而供助、系杆和墩往团结在一起,根据位移交形协调条件,供的水平

21、推力的增量主要由桥墩和拱助自身承受,因而考虑系杆变形后它是有推力的结构。系杆的作用是对拱施加预应力以抵消拱的大部分水平推力(主要是恒载产生的水平推力),因此通常把系杯看成预应力体外索。除去系杆承受的水平推力后余下的拱的水平推力一般来说不大,还可以通过适当的超张拉给予最大限度的减小,从这个角度可以看成无推力拱。刚架系杯拱由于系杆的存在,降低了对下部结构和基础的要求,使拱桥的应用范围从山区扩大到了平原和城市。在施工方面,刚架系杆拱的施工可以像固定供一样采用无支架施工,因而桥梁的跨越能力也较大,也能够充分发挥钢管混凝土拱桥施工方便的优越性。由于这些优点,这种桥型出现以后得到较广泛的应用。目前已建成的

22、下承式刚架系杯拱中跨径最大的是深圳北站大桥(150m),在建的跨径最大的是湖北武汉汉江三桥(跨径达280m);带双悬臂半拱的中承武刚架系杆拱(俗称飞鸟式或飞燕式),已建成的跨径最大的是广东东南海三山西大桥(主跨zdo刎。在建的大跨径的有主跨达36的广州丫警沙大桥、主跨达280米的武汉汉江五桥和主跨达235m的江苏徐州京杭运河大桥。由此可以看出,刚架系杆玖正成为大跨径钢管混凝土拱桥的主要桥型。钢管混凝土拱桥同自架设体系,先架设空钢管供,再准筑管内混凝土,然后上横梁、纵梁等桥系构造,最后进行桥回铺装和人行道、栏杆等附属物。在系杆张拉前的水平推力由洪和下部结构承担。因水平位移对拱的受力的不利影响很大

23、,通常要求下部结构有较大的抗推刚度、承受大部分的水平推力。钢管混凝土拱先期架设的空钢管供的自重较轻,通常情况下其恒载水平推力较小可以由下部结构承受。但此后加上的恒载,如横梁、纵梁、桥面铺装等自重,应由系杆承受。也就是说系杆应随上部结构的施工逐步张拉。然而,近期出现的一些大跨宽桥,由于桥面纵坡的存在,使得系杆较难在横梁架设之前安装,因而在横梁架设之前的恒载水平推力要靠桥墩来抵抗。对于宽桥,横梁的自重在桥梁恒载中所占比重很大,尤其是混凝土横梁,这就使得桥梁基础工程量急增,未能充分发挥这类桥型对下部结构和基础要求低的优势。因此如何解决这一问题,是这一桥型应用与发展的关键之一。刚架系杆拱供墩团结点的构

24、造较为复杂,俄慢下承式。拱助、桥墩、帽梁汇聚在这里,为不规贝消几何体。其受力也较复杂,各方向的力也都集中于此点,且受系杯强大的集中力作用,容易在主技应力方向发生开裂;此外桥墩内也可能产生较大的主技应力。这些都应引起重视。二、肋拱桥横向结构钢管混凝土拱桥均为助拱桥,由于其材料强度高,随着跨径的增大,横向稳定问题较为突出,所以其横向结构的合理采用至关重要。上承式助供,可采用多助结构(多于二的),横向联系通常布置成等间距的径向根撑(或根系梁),其横向稳定主要取决于整桥的宽跨比。对于中不承式拱,横向联系的布置在桥面附近受到行车空间的限制,同时对横向动力特性和美观也有很大的影响,合理布且尤为重要。有时为

25、加强其横向稳定性,将其两助内倾而成提亚扶。与之相对应,一般助扶则称为平行肋供。当然,对于跨径不是很大的城市桥梁,或出于景观考虑,也有做成无风撑的。1、横撑布置横撑布置对结构横向稳定的影响要大于其自身刚度。研究表明,拱顶附近揭撑布置成与拱轴线正交、在其他地方与拱轴线相切,对提高横同稳定效果较好4。这是因为,拱助横向先稳向面外恻倾时,拱顶处的债撑主要承受洪助的扭转变形,采用竖向布置的横撑增强了对拱肋在拱顶处的扭转变形的约束,能提高拱的面外稳定性。在其他地方,尤其是l4附近拱助侧倾时根撑要承受供助的相对错动,对核撑是横向湾矩,因此,采用切向布置(如k撑),对约束拱助的相对错动有较大的作用。横撑在增加

26、横向稳定的同时,由于它使得供的横向整体刚和质量的提高,特别对于中下承式拱桥由于重心的提高,使得拱对横向地震波的响应增大5。对于钢管混凝土拱桥来说,在横向受力时,由于结构受力并不以受压为主,因此钢管混凝土抗压强度高的特点并没有得到充分发挥出.相对于宝钢管拱桥来说,钢管混凝土拱桥钢管内混凝土的质量加大了供的横向受力。因此,正确处理钢管混凝土拱桥的横向稳因此钢管混凝土抗压强度高的特点并没有得到充分发挥出.相对于宝钢管拱桥来说,钢管混凝土拱桥钢管内混凝土的质量加大了供的横向受力。因此,正确处理钢管混凝土拱桥的横向稳定和抗横向地震作用力这一矛盾显得十分重要。拱桥的横向基频与结构型式和横向构造有关。中不承

27、式拱的横向基频较上承式的低;在下承式中,拱架组合体系的横向基频较刚架系杆拱的低。不同位置的根撑对助供的横向基频也有着不同的影响。拱顶模搜数量和刚度变化较供脚的根撑数量变化,对面外基频影响要明显得多。因此,对于中承式拱在拱脚采用较强的横向联系(如k撑、x撑)、在拱顶采用较少较弱的横撑,既能满足横向稳定要求,又有利于减小横向地震力作用,同时建筑造型也较佳。由于目前钢管混凝土拱桥横向稳定计算和抗震设计方法的还不完善,一些设计者由于担心横向先稳而采用过强的横向联系,既造成浪费,也不利于抗震安全社,这在位于强震区的桥梁尤其有害。2、提篮拱(又称x型肋拱)显然能提高洪的横向稳定性。但提篮供随着倾角的增加,

28、会使下部结构工程数量也相应增加。对拱应直接坐落于基岩时,由于可采用分离式拱座,工程数量增加有限。拱肋的倾斜也会给施工带来困难,因此,应选择合适的倾角。有关研究认为采用x型肋拱其横向稳定性可比平性助拱提高12-20倍,同时也会降低供肋的面内极限承载力。所以,x型肋拱的内倾角也不是越大越好,一般控制在3度15度之间,以10度附近为佳。尽管我国一些学者在研究的基础上,提倡采用提篮拱,但由于过去以钢筋混凝土材料为主的拱桥在施工上的困难而极少采用。1993年竣工的四川成渝高速公路上的内江新龙拗大桥,采用了提篮拱。该桥为单跨钢管混凝土劲性骨架箱助拱。目前在建的徐州一连云港高速公路徐州京杭大运河特大桥采用了

29、提篮拱。该桥为带悬臂的中承武刚果系杆钢管混凝土拱,跨径布置为57.5米235m57.5米 ,主拱断面为根哑铃形平行四边形行式,拱肋内倾9.934度,成提篮状。应该指出,提篮拱在提高横向稳定性的同时,也使得造型较佳,然而对于宽跨比较大的桥梁,纯粹为了造型的原因而采用提篮拱是增加了下部结构和基础的工程量,增加了施工的难度,是不必要、不合理、也是不经济的。3、无风撑供无风撑拱指中、下承式肋拱,出于美观考虑,或当桥面较宽而跨径又不大时出于经济和美观考虑,将两肋之间的横撑(或称风撑)完全取消的肋拱桥,也有称之为做四拱的。无风撑拱主要解决拱助的横向失稳问题。解决这一问题的途径主要有两个。一是提高拱肋自身的

30、横向抗弯刚度;二是提高结构体系的横向稳定性。采用横向圆端形截面(加浙江义乌篁园桥、杭州新塘桥)、横向双圆肋(如浙江义乌宾王桥)、横向底箱肋(如广东中山二桥)、三肢桁肋(如黑龙江依兰牡丹江大桥)等等,都是提高拱肋自身横向抗弯能力而采取的截面形式。对于拱梁组合体系,宜作成刚性系杆刚性拱或刚性系杆柔性拱,系杆(梁)通常采用箱形梁,除自身有较强的抗扭、抗拉和抗弯能力外,与纵梁固结的桥面横梁也能极大地提高桥面系的刚度,这样为拱肋的横向稳定提供了较大的非保向力作用。对于钢管混凝土中下承式拱桥,其桥面系一般为简单悬挂的结构,其自身的横向刚度不大,吊杆的刚度也很柔,所以桥面系对拱肋横向稳定的贡献与拱梁组合体系

31、有很大的差别,因此,对于刚架系杆拱应慎用无风撑供。三、拱肋截面构造钢管混凝土拱桥的拱助,当跨径不大时可采用单管截面。单管截面主要有圆形和国端形,单圆管加工简单,抗扭性能好,抗轴向力性能由于紧箍力作用显示出优越性,但抗弯效率较低,主要用于跨径不大(80米以下)的城市桥梁和人行桥中。肋拱桥中绝大部分为哑铃形断面,跨径从几十米到160m,以100m附近为多。哑铃形截面较之单圆管截面,截面抗弯刚度较大,类似于工字形截面,但由于两圆管的直径与高度之比在1/2.5附近,因而不能视为钢管混凝土格构式截面。腹腔内的混凝土受钢板横向套箍作用机理复杂,缺乏研究,若采用钢管混凝土理论计算,计算将很复杂。由于钢管混凝

32、土拱桥设计理论滞后,现行的计算方法常将其作为钢筋混凝土结构,使这一矛盾并不突出,且考虑到腹腔内混凝土处于中和轴附近,设计计算常将其忽略,而只计及自重。哑铃形截面的腹板与圆管相接的交角较小,而且上下两管弯曲成型后,腹板的焊接有较大的残余应力,所以加工较为困难,质量不易得到保证。在灌注混凝土过程中,腹板受混凝土压力的作用容易外鼓,所以有时需有拉杆对拉或采用其他措施,这使得较为构造复杂。从经济角度来说,钢管混凝土构件中钢管的作用较大、所占的造价比重也较大,理应将钢材尽可能地安排在外留(即不计混凝土时,应是箱形断面),而哑铃形截面并没有使所有的钢材都处于截面的外围。这同钢筋混凝土构件将矩形截面变形工字

33、形截面的效果不同。所以钢管混凝土拱桥,在跨径较小时可采用单臂截面,在跨径增大以后应采用行武断面,采用哑铃形截面的跨径范围不应像目前这样广泛。桥式拱助能够采用较小的钢管直径取得较大的纵横向抗弯刚度,且杆件以受轴向力为主,能够充分发挥材料的特性,对跨径超过100米的钢管混凝土拱桥,桁肋是一个比较合适的截面形式。前苏联30年代建造的ncetb河铁路拱桥,即为二铰变截面桁拱。我国较早出现的桁拱断面为横向哑铃形桥式,其上下为两个横哑铃形断面,腹杆用钢管桁片,广东南海三山西大桥(主跨200米,带悬臂中承式刚架系杆拱)、陕西延安王家坪延河大桥(净跨190m,中承式)等桥采用这种形式。这种截面形式,根哑铃形缀

34、板中的混凝土较之前述的哑铃形断面对加大抗弯刚度有较大的作用,但这种截面的钢一混凝土横腹板的受力特性与国钢管混凝土相差很大,同样存在着设计计算上不能采用套箍理论的问题。因此,其后又发展了混合式的桁式断面。这种断面,上弦采取横哑铃形,下弦两根钢管采用钢管下平联联结。上弦为了缩短缀板的长度,宽度较下弦为短而形成梯形断面,河南安阳文峰立交桥(主跨135m,下承式刚果系杆拱)、四川高谷乌江大桥(净跨150m,中承式)等桥采用这一形式。直接采用多肢桁式(格构式)断面的钢管混凝土肋拱近年来有较多采用的趋势。这种拱助弦杆采用钢管混凝土材料,腹杆和平联均采用钢管,它较之横哑铃形桥式截面,材料省自重轻,跨越能力强

35、。同时,由于各肢以受轴向力为主,更易于采用钢管混凝土理论进行计算。在多肢桁式断面中,四肢最为常见,截面的高度与宽度之比在2:回附近较为合理,拱肋的面外稳定性主要通过横向联系来保证。福建闽清石潭溪大桥(净跨136m,中承式)、沈阳浑河长青大桥(净跨140m,中承式)、四川眉山根江大桥(主跨206m,带悬臂中承式刚架系杆供)、广西三岸色江大桥(净跨270m,中承式)等桥采用了完全桁式断面。另外,还有一种采用集束钢管混凝土的肋拱桥。这种结构加工量少,材料用量比桁拱多,未被桥梁界普遍接受,其受力性能有待实践与理论验证。钢管混凝土材料的显着优点之一是在构件受压时,钢管对混凝土的紧箍力作用使混凝土的受压强

36、度得到提高。为使这一优势得到充分发挥,应采用强度较高的钢材,但含铜率不必太大。在钢管混凝土拱桥中通常合钢车在512之间。但日前有些钢管混凝土拱桥的拱肋合钢车接近20。通常所说的钢管混凝土结构其合钢率在20以下。接近或超过20则其受力性能与钢结构相近。钢管管壁较厚时,钢管的局部屈曲问题并不突出,填充混凝土的必要性不足,而且钢管的加工也困难。因此,采用太高的含铜率是不经济、不合理的。因为有钢管的套箍作用、而且拱式结构常以稳定控制,所以管内混凝土的强度不必要求太高,一般采用c40。但由于现在混凝土标号的提高不会使造价成倍增加,所以也有采用c50甚至c60。四、桥面系钢管混凝土拱桥除拱梁组合体系桥面系

37、为以纵梁为主外,其余均以横梁为主结构。它将横梁设置于立柱上或吊杆下,然后纵向铺设桥面板(梁)。活载经桥面系通常横梁传给立柱或吊杆,立柱或吊杆再将荷载传给拱肋。这种桥面系不参与总体受力,属于局部受力传力结构,其单位自重不随着桥梁跨径的增加而明显增加,这也是这类拱桥跨径可以较大的原因之一。在已建成的钢管混凝土中下承式拱桥中,主拱跨径在五六十米时,吊杆间距一般在4m左右;主供跨径在60150m时,吊杆间距在510m之间;跨径超过150m以后,吊杆间距宜在12m附近。吊杆间距再大以后,桥面板的自重会增加较多,建筑高度也会随之增大,这对中下承式供,特别是下承式拱的总体经济性是不利的。当然,无论桥梁跨径多

38、大,一成不变地采用4m,5米的吊杆间距也是不合理的。因为在这种非拱架组合体系拱桥的桥面系中,桥面板和横梁中活载占总荷载的比例较大,而吊杯及其错具的受力更是以活载(尤其是挂车荷载)控制,在412m的吊杯间距范围内,吊杆、横梁、桥面板的受力并不随着吊杆间距的增大而明显增大。因此,随着桥梁跨径的增大,吊杆的间距适当地加大,总体经济效益是好的,而且也符合审美的需要。钢管混凝土拱桥由于拱助截面的轻型化,使得桥面系在恒载中所占的比例上升。无论是从结构还是从施工方面来说,桥面系的轻型化问题都显得十分必要。尤其是宽桥,横梁的受力很大,其重量在桥面系自身中所占的比例也很大。横梁的跨度一般等于两拱助的中距。横梁所

39、承担的荷载长度为两吊杆或立柱的间距。当横梁跨径在10m附近时,通常采用钢筋混凝土构造;在20m附近时,则应采用预应力构造;跨径更大时,可以考虑采用钢一混凝土或钢一预应力混凝土叠合梁构造。广州丫髻沙大桥主跨 360米,桥面侧向总宽度32.4m(含分隔带),吊杆横梁采用了钢一混凝土组合梁。横梁计算跨径31.62m和35.5米,钢横梁为二字形,桥面横坡通常横梁腹板的变化形成。一根钢横梁的自重在30t左右,吊装后在其顶板上浇筑混凝土约18t,总重仅46t左右。若采用预应力混凝土梁则重达100t左右,结构自重和吊装重量均大很多。深圳北站大桥是一座城市跨铁路站场的立交桥,主跨150m,桥宽23.5米。横梁

40、采用预应力钢一混凝土组合梁。利用纵铺的预应力空心桥面板作为组合梁受压翼缘的一部分,组合梁中的钢梁采用了高托座预应力钢箱梁。五、结束语钢管混凝土拱桥是一种优势明显、极具发展潜力的桥型,及时总结其应用经验是非常必要的,而开展深入系统的研究则更为重要。然而到目前为止,除少数研究单位进行了为数有限的钢管混凝土拱桥受力全过程性能、极限承载力、温度应力、混凝土徐变等实验室模型试验和理论外,大部分的研究是针对具体桥梁进行的实桥测试、验证性试验和以大型通用程序为主的有限元分析,动力性能研究则更少,对钢管混凝土拱桥受力性能的研究还缺乏深入细致和全面系统的了解。这就使得我国钢管混凝土拱桥的大规模应用缺乏必要的技术

41、准备,实际应用带有较大的盲目性。在实际应用方面,目前还未有钢管混凝土拱桥的设计与施工技术规范,使得工程设计与施工无章可循,这可能给工程造成浪费和留下质量问题和安全隐患。因此建议有关方面应重视钢管混凝土拱桥的技术研究,投入较多的经费,组织科技攻关;尽快制定颁发钢管混凝土拱桥的设计与施工规范,以使这一具有中国特色的桥梁结构显示其应有的技术先进性的经济合理性。在当前的情况下,应慎重发展钢管混凝土拱桥,尤其是大跨径、大规模的钢管混凝土拱桥。钢管混凝土拱桥发展趋势钢管混凝土拱桥结构性能优越,跨越能力大,结构体系灵活多样,既可以做成有推力拱,也可以做成无推力的系杆拱,并能很好地适应不同地质与地形,外形优美

42、,因此倍受桥梁工程界青睐。近几年随着对钢管混凝土结构研究的深入,钢管混凝土拱桥跨径记录在不断突破,形式在不断创新,技术在不断提高。原哈尔滨建筑工程学院钟善桐教授曾撰文指出系杆拱桥的跨度可达600m左右。同济大学的周念先教授则在文献4中提出:在500m1000m的超大跨范围内,可供比选的方案有悬索桥、斜拉桥和系杆拱桥。对于系杆拱桥,虽一时不具备1000m的把握,但可以650m为第一步目标。同时周念先教授进行了初步探讨,认为是可行的。钢管混凝土拱在结构体系和施工方法上都具有更大的跨越能力,为拱桥跨径的继续向前推进提供了可能,相信经过广大桥梁工作者的努力,跨径650m的拱桥在不远的将来会在我国实现,待有了成功经验后,再向1000m前进。钢管混凝土拱桥的应用现状钢管混凝土应用于拱桥,始于20世纪30年代末,苏联建造了跨越列宁格勒涅瓦河101m的下承式钢管混凝土公路拱桥和位于西伯利亚跨度达140m的上承式钢管混凝土铁路拱桥。此后相当长的时间内,世界范围内再没有修建这种类型的桥梁。1990年,我国第一座钢管混凝土拱桥四川旺苍东河大桥建成,该桥为跨径115m的下承式刚架系杆拱桥。它是我国在钢管混凝土结构理论研

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论