高等代数答案_第1页
高等代数答案_第2页
高等代数答案_第3页
高等代数答案_第4页
高等代数答案_第5页
已阅读5页,还剩110页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章多项式习题解答P4411172623999FXGXXX22157FXGXXXXP4421231|9XMXXXQ余式21PMXQM021MQPQ方法二,设32011MQXPXQXMXQMQP同样。22421|XMXXPXQ余式2221MPMXQPM0220MMP221,1MPQXPQP4431用3GXX除53258FXXXX解543223303175349536673327FXXXXXXP44323232122812XXXIIXIX1281298IXII即余式98I商2252XIXIP444150,1FXXX即5432151101101511FXXXXXX当然也可以5511FXXX54151XX1P4442结果3424322328222224211FXXXXXXX4322137FXXIXIXXI432432213721575XIIIXIIIXIIXIIIXIIXIIXIXIIP45512212111GXXXXXX1313XXXXF,1FXGXX23231GXXX不可约不可约1434XXXF,1FXGX31221221102224XXXXXXXF432322426621,4222221GXXXXXFXXXXXX22,221FXGXXXP45612122XXXF2221GXXXX221112XXXXX12212XXFXXGX2,1424123YXXXXXF2124GXXXX11XFX11XGX而1112323231FXGXXXGXXX111211231133X1XXGYFXG212111333XXFXXXGX3,144234XXXXXF21GXXX,232FXGXXX211GXXX2131FGXXG32132XFXXXXGXP4572112FXGXTXTXURX2222122211111TTTUTTGXRXXXUTTTT由题意|RXXRXGX与G的公因式应为二次所以0130143322223UTTTTUTUTT0304331223UTTUTUTTXRT为一次的否则解出当1404330223TTTTTTU时32314ETT或311,03,02TTTTU只有时当43331433433233232TTTTTTTTUUTUTT422468233122TTTTTTU即03422TTTU2111TP45、8|,|DXFXDXGX表明是公因式DX又已知表明任何公因式整除DXFXGX是与的组合DX所以是一个最大的公因式。DXP45,9证明,FXHXGXHXFXGXHX(的首系1)HX证设,FXHXGXHXMX由,|FXGXHXFXHX,|FXGXHXGXHX,|FXGXHXMX,FXGXHX是一个公因式。设,DXFXGXUXFXVXGX,DXHXFXGXHXUXFXHXVXGXHX而首项系数1,又是公因式得(由P45、8),它是最大公因式,且,FXGXHXFXHXGXHXP45、10已知,FXGX不全为0。证明,FXGXFXGXFXGX1证设,DXFXGX则0DX设1,FXFXDX1,GXGXDX及DXUXFXVXGX所以11DXUXFXDXVXGXDX消去得0DX111UXFXVXGXP4511证设11,0,FXGXDXFXFXDXGXGXDX111,1UXFXDXUXGXDXDXUXFXUXGX1P4512设21111111,11UFVGUFVHUUFUFVHVGUFVUGH1111UUFUVHVGUFVUGHFGH,P4513,G1IIF,固定12,1IIFGG12,1INFGGGP4514,111,1FGUFVGUVFVGFFGF同理,1GGF由12题,1FGFG令12NGGGG,1IIFG每个11,1FFG,1123,FFFG,(注反复归纳用12题)。1212,MNFFFGGGNULLNULL1推广若则,1,FXGXM,N有,1MNFXGXP45,15FXX32X22X1,GXX4X32X2X1解GXFXX12X2X1,FXX2X1X1即FX,GXX2X1令X2X10得231,23121IIFX与GX的公共根为21,P4516判断有无重因式543257248FXXXXXX34424XXXXF解4421205234XXXXXF3251325412FXFXXXXX232215492541254422FXXXXXXX324412452223XXXXXX故有重因式XF32X4843XXXF3221233FXXXXXX1311323322XXXXXF2661123311132331111XXXX131XFXFP4517有重因式(有重根)1323TXXXXFT时解TXXXF63236213TXTXXFXF如则有重因式3重因式3T13XFX如则3T21522153222TXXF此时必须415T有重因式4212XXXFP4518求多项式有重根因式的条件QPXXXF3证PXXF2323323FXXPXPXQ0P22223327323244AQXPPXQXPPPP32427PQ0P4519令4221,1|,1FXAXBXXFXXFX因为所以即12423CBXAXXBXAXXF4020AABACBBC0224BABBAA又1123DXCXBXAXXFXFX01AABACBD0BBABAA101BA2,1BAP46,20证212NXXFXXNNULL无重因式(重根)证NXFXFXN,YXFFFN,1FX,1NFXFX无重因式P46,21GX12FXFA2XAFXFXGA0又GA0/11102222XAGXFXFXFXFXXAFXGA/4/122,XAGXFXFXAXGXGXGX/是G根,且使GX的K1重根A是GX的K3重根P46,22“”必要性显然(见定理6推论1)“”若X0是FX的T重根,TK,由定理FKX00若TK100KFX,所以矛盾P4623例如1,01MMFXXXFXMXM则是的重根根0XFX但不是的P4624若11|NNNXFXXFX则证若12FXXGXR由上节课命题10NNNFXXGXRGXRR所以|1NNXFXP46,25证明设X2X1的两个根312,1I21233111213322222100XXXXFFFF112122110110FFFF即211010FF121,XFXFXP46、26分解1NX0221COSSIN,0,12,KKKIKNN1NNULL设1101221111212122,11COSSIN,11122112COS1221112COS1NIIKMMNKKKKMKMNKKKIXXXXNNIINXXXXXXKNMXXXNKNMXXXXXNNULLNULL在中在中为奇当时1NKP46,27求有理根(1)X36X215X14FX解有理根可能为1、2、7、14。当A首项系数则FXP为某不可约多项式X的方幂的充要条件是GX或者,1FG或者|MMFXGX证明11“,0,RFXPXHXHXPXHX反设不是则而111,1,|,1,PHHPXPXFG即取G则且,|,MSMFGHPX否则矛盾“”,1,1,1|RRR1FPGXPGPGFGPGPGFGX若若4881,0,PFXFXFX首项系数则为某不可约多项式的方幂|,|,/MGXHXFGHFGMFXHX由或者证明“,|,1,1,1|RRFPGHPHPHFHF设若FG,1|RRRPHPHPHFHXM111“,0,FPHHPHPHHX反设不是则而令G则|,1,1MRFGHFGFHMPHPH却P48,补9证2的非零根NNMXAXB没有重数证反设,NNMFXXAXBK有重根K2,0111/1/00010NNMNMMMMGXFXNXANMXKANMNXXNANMHXXNHXMXHXHXHX有重根有重根有重根无重数根但重根P48、补100,1NFXCXFXFXN且,0MFX证明的根只能为或单位根即满足某X1的根N证设为FX的根,由FXFXGXFXNNF0,为的根,220,NNFFX为的根,23,NNNNULL都为FX的根0,FXFX不可能有无限个根,其中必有相等者IJNNIJ不妨设,210,IJNNNIJNNM令0,1MX则或或是的根P48、补11题/NFXFXFXAXBFX有N重根B,NAAAAAANULLNULL1212N补充P4812题的两两不同FXXXX证(1)1111111NIIIIIIIIIINXAXAXAXAFXFXLFAFAXAFAAAAAAAAANULLRA11110,11,1,11,1,2,1NNIJIIJJIININIIJJRJLALALAJNILXINNLXFXFXQRXFANFALXHAFARAHXRXNULLNULL,为次多项式设则而形式多项式P49、补13题(1)求423314052FXFXFFFF2时,至少去掉3个X,不含X3项了,对于I2,J2同理其它情形,至少去掉两个X且第一行(或第二列)的两个X只能取一个,故不含X3项,只剩下I1,J2时,A12本身是X项为12134A12A21A33A44X1XXX3,系数为11212,P971111011,NNJJJJJJDNULLNULLI故中与一样多即号,号一样多,也即奇偶排列一样多,N2时,奇偶排列各占一半P981221111121111111NNNNNNXXXAAAPXVXAAANULLNULLNULLNULLNULLNULLNULLNULLNULL按第一行展开1211,0NNAAAVPXNNULL两两不同即12112101,NNPAPAPANAAANULLNULL总有两行相同最多个根,即PX的所有根为111321332313222339813222202011111122XYXYXXXXYPYXYXYXYXYXYXYYXYXYXXYYXYXYYXYXXYXYNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL22334413311113114813341131624811311113PPNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL例P9813(法一)123412341234123423410127012701271603412018100044004441230710130043600040法二10234123412341234103470113011302001020201041202220200001310123011101110011123402002016000130004法三令2412312341234321234,41,1,1,111110222222022160CFXXXXIIIDFFFIFIIIIIIII为次单位根令则行列式P9813解2211111111111111011111000111101111100011110111110001111011111000XXXXXYYYYY1,21,2111011111111111|,1111111111111111,1111111111111111XXXXXYYXFXYXXFXYFXYYYNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL交换行再交换列解法二,设FX,Y则第一行减第二行又因为FX,Y关于X是偶函数,即X2|FX,Y同理,Y|FX,Y,且也是偶函数,所以Y2|FX,Y2222222,4|,FXYXYFXYFXYKXYFXYXYY2而中的系数为1故有FX,YXP981322511222311323411421446921262144692126021446921262144692126XAAAAAABBBBBBCCCCCCDDDDDDNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL性质2133246122134272246427100001101454310076811611003427211005882941NULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL700110010010001161100111610001001001294029400000029411294011161000性质111111111111211112311113122222222222212111211211229814222ABCCAABABCBCPABCCAABABCBCABCCAABABCBCABCABCABCNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL左2213121NULLNULLNULLNULLNULLNULLNULLNULLNULLNULL右右P9815求出所有代数余子式111213142122232431323334414243441214600001211260000211563000037012AAAAAAAAAAAAAAAA直接计算有1127123321641014555111213212223313233AAA直接计算有AAAAAAP99161351213512135121222012106145012142313401214012140611452112533121012165701216572103507105907105913512263310121422438400119275300817410041219135120121442300119450086311100028571351201214001101900073000285715121101214217694830011019445000103000069P9916142104211022121222012202122115213332110051568842124110220300614542601066871102202124241051564128021220668711022253021241224828511022430112413001222004151438000760036634410002017000073131117878P9917若121221121,1,2,2,11,2,3,1NNNNNNJJJJNJNJNJJJJJJNNNULLNULLNULLNULLN1NN1N中则取J取取或若则故只有两项123N0,2,3,N1DX1YNULLP9917111122122111221122212111121122121111112,302NNNNNDABNDABABABABABABABBAAABBABBBABABBBBBBBABBBBBNULLNULLNULLNULLNULLNULL则则当时第列与第列成比例121221111100199170101NIMININMINMIHHNNIIIXMXXXMMPXMXMXXXMXMMMXNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL1IM23N2111X311N111X21X31XN11HNMNULL213244121121210002222222100991700100001000002020022111101020100002IPNNNNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL性质2N2(N2),且N1时。D1(左上角1)199175,213212010000200001111211122NPNNNNNNNNNNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLINULLI从最后一列开始,第N列加到第N1列,再第N1列加到第N2列第列加NN1NN122P10018从第二列起有列(第三列)乖以11IA加到第一列,则有121121121221111111111000000011NOIINNNNONOIINONIINIAAADAAAAAAAAAAAAAAAAANULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLI,(0)P10018COS112COS1COS12COS112COSAADNANANULLNULLNULL证法一,用归纳法,D1成立,COS,COS212COSCOS1COS2COSCOS2COS212COSKNDKKNKDNDDNNNANANNNNAA的第二行22112,02SAAAS其余111100000AAANULLNULLNULL12120,000IIIJIJJJJNNIAAAEEAAANULLNULL00行00AIA的第I列,且,KIIIJJAA0KIAA的第J行,JJIAAI且,SJ0JSA由于A与所有N级矩阵可换,故可换与NEEEEA1131211,NULLA的第一列全为0,的第一行只留下AAAEAE111111可解非0的第二行只留下AAAEAE121222A11其余全为0的第三行只留下AAAEAE131333A11,其余全为0的第N行只留下AAAEAENN11NNA11其余全为0所以AEAAAAA111111110011AAP200T8ACBCABAACABCBAABCABCABCACBCBACABBCAP200T9222111“,202442AABBEBEBEBE1若则得4222111“,22442BEABBEEBEBEA若则P200T10反设为列的元素行中第那么那么不防设SSAAAATSST2,0,0,0222212110NNSKKSSKSKSSSTSNKKAAAAAAAANULL20A,矛盾,0A即。P200T11AABBBAABABABABAB,“为对称矩阵那么如果,“ABBAABABBAAB。P200T12设ABC,,BBCCCBCBAAACAAB21,21恰如,即为所求CCBBP200T13令21111211222222221233111211211111,11NNNNNNNNNNNNXXXXXXXXXDXXXDXXXXXXXXNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL1121,NIJIJIJKIJNXNKDDAAAXS221IJJIIJNAADDDXXP200T14“0IBB取为的一个非列00,0AAXABI故有非零解而“0A0AX有非零解010200,2,N0XBXBXBNXNULL令0,21BBBBBN所以组成的列由而NULLP200T15考虑AEE的每一列去乘A的各行为0,AE0IE又AEAA0P200T16考虑齐线方程组,0NXRCXCR只含个未知量,而秩只有零解0CCRCX秩未知量个数00BCBC000BCX的各列都是适合都为0,0BB若00BCCBECBEBEP200T17设12,SANULL的行向量为(I),B的行向量为SNULL21,(),而,21SBACNULL的行向量为()。那么111,R222,RNULLMMRM。设1,IIRNULL为()的极大无关组,那么秩(A)秩()R设1,JJPNULL()为()的极大无关组,那么秩(A)秩()PUU11,IIRIJPNULLNULLNULL秩(AB)秩(C)秩()秩()RP秩(A)秩(B)。P200T18设秩(A)R,那么,线性方程组AX0的基础解系可设为RNNULL21,。设B的各列为B1,B2BMAB0说明B的每列BJ乘以A的每行都为0,即时BJ是AX0的解。12,JNRBNULL1212,NNBBBRNULLNULL秩(B)秩1212,NNRBBBNRNULLNULL秩ABRNRN秩秩KKP200T19若AK0212121KKEAEAAAEAAAAAAANULLNULLNULL0KEAEE121KAAAEAENULLP201T20,1DBAACAACBDA11231112100110,AAAA12134XXAXXX令112312243132AXAXAXAXAXAXAX131311322231123123130001111231AXAXAXEXAAXAXEAXEX存在而1122442120AXAXXAAX411221311,1,1233X1110331203321133A4613513411203602121011322332313322212312111AAAAAAAAAA即143153164A46135134111AAAA123423123111102612241234231211111026AAAAA113221312121113443120EOAAAAAAEAAAA131143211323152AAAAAAB4111121213431412341000231201000031111000523201AAEOAAAAAAEOBA132261710002262617212013010017520130021111010210053320141535法1EA42AA411法2100102200101202000112200000011111100011110100111100101111000111110011220011002200100102201001200200112200010120201001022000022222111140002200440002024040200240041111400011002200010120201001200240001111040011111|00401111400041111EAA41411A334310751001061106110100,5421043726501523320317122003AAE1075100101201430120033234106004330703310007512140100325800104130691110001594399159A151219325841306911159439915971357012300120001A111131357120101230112001A10002100721038113182100320057181316A1111210321857211816133216A1210021032003257345768111221122222001110001221000103140100031401002761001000111000122100010321001212210001120120010314010003051100001110000011100000130112000211121205110022273503005222311001012221110001122271011100062637553101006263310010122211100011222A113720735101933663336求A1A方法1令B12100NAANULLB1EC1ECC2C3C4A12B112B112C12C212C312C4111112481632111124816111248112412方法2A2100002100210021002BDOCA01111BBOCOC111241021182411024BDC1111124816321111024816111002481100024100002P201T21设,KXKA123400RRYYACXYYYC则令才能乘,XYYX与3412AYAYXYCYCY而2143YCYAYXYCYA11114440,00,0,00CYYAYYXXYYXEAYYCY若则13331222KRAYYAEYACYYCEYC11100CXAP201T22将00NAXA121NAAAANULL由21题,(见上面)1111112111000000000NNNAAAXAAANULLNULL0P202T232153315211254635462231321122108X解02112001122011111111201101122011111101321000213101012161100103230002121110123212010132021611216111BAXAXB,则XA1B,故11111210000111112100,001110120000010012ABNULLNULLNULLNULLNULLNULLNULLNULLNULLNULL所以1111011111101XAB2NULLNULLNULLNULLNULL4,111022110A11213112223213233321621222AAAAAAAAAA421112142281111021242266211222458XP202T24EAAAA11EAAAA1111AA若对称即则1111,AAAAAA若反对称即则11111,AAAAAAA若AKKAAAN由那么,1NAAAAA0A于是A不可逆。P202T25若A,B上三角形,则IJAA,,0,IJIJIJBBIJAB0当时0时,IJ当1111100NININIJIKKJIKKJIKKJKJIKKKKIKKICABABABBACAB为上三角,IJIJABAABB若为下三角形则,0,IJIJIJAB,0的秩符号差则可逆使其中都是的齐次一次式1211221122“”,NNNNFXXXAXAXAXBXBXBX设12121212,0NNAAAAABBBBB若线性无关,不妨设令212211222111YYFXYXBXBXBYXAXAXAYIINNNN则02,2221212211符号差秩为则令CZZFZYZZYZZYII1112222121,0,1NNNNYAXAXAXYXKAYXFKY若线性相关,不妨设及令则秩为233123123996247161030243071990,128340,2067267228816196035880104122421412141100201640,2067228816196035880PAPPPAAPPPAXAX故A正定,二次型12,NFXXX正定这里顺便发现一个等式2111112111112111112111112210002100012100012100012P2337判别1212111,NNNIIIIFXXXXXX是否正定。证121021121211210211A由斜行列式,1110111112,42222KKKKKKNKPPPPPPPP12KNKKPP2121212121111KKPP212121122KKKKPP212111101,2,2KKKPKNXXXCFAN正定正定,2123322123112811213510,10,541545044110,055405TPATPPTPTTTTTTTTA2即又因为无公共解0即对任何都有主子式大于T0233121290,KKPAAAIIIIIIKNULLNULL正定的主子式全大于证明此时的顺序主子式也大于0。所以A正定(定理)任取的行,列作成一个阶主子式111212122212,KKKKKIIIIIIIIIIIIIIIIIIAAAAAABPBAAA设12,KIIIFXAXXXX作一个关于的二次型1212,0,0,0,0,0KKIIIIIIGXXXFXXX1212,KKIIIIIIXXXXXBX12121,0,0,0,00,0,0KKKIIIIIIIIBGXXGCCCFCC是的矩阵,因为任给X0BKB为的正定矩阵,有P233,10,,IJNNAA证设TEAL那么的第个顺序主子式KKKKKKKKKKKRBTBTATAAAATAAAATTP1,1212222111211是一个T的多项式函数,且NULLLIM,0KTPTM,KKKNTNPTMNULL当后,恒有012012MIN,000NNNNNNTNPTPTPTNULLNULLNULLNULL取则当,恒有正定ATEP23311A正定,证明A1正定证可逆使存在正定可逆CCCCAAEEACCEACC11即111111,CACEGCGCCCGAGEAEA1NULL取那么则正定234577720012,1000,000,0,0,000,000PTEATPTEATEATEAXEAXXEAXXXXXXXAXXX作12FFFXABX也有任0,0XFXAXXBX所以F正定,即AB正定P23414PRAXXF惯性指数秩0证设XCY,使22122221RPPYYYYYAXXF“充分性若PR,则负系数平方项不出现“任取1100022100010,0NRCXYCXFXCFXXXAXYYF0必有在的值为半正定“必要性,反设”1200000,0RRRNRCCPRYXCYCNULL半正定即于的所有主子式大于或等AXXFCA0P2341证首先12,XX,线性无关,反设线性相关,不妨设有21,XXRKKXX,12221211XAXKXAKXKXAX0与220XAXNULLNULLNULLNULLNULL作一个被为元二次型那么任取必有是一个元正定二次型必有112222112121122222211112,RRRRRNRNRNNRRSYZYZGFYYYCCYZZYYGOGOZCOEOEYZFYYXCYCCZ使令可则且12CZCCCFRA2Z逆NULL可逆的正惯性指数秩P234补3先讲补2,221221QPPPLLLLF证设NINIIIXAXAXAL2211并设XCY,C可逆使22122221QPPPYYYYYF那么反设110000PPNLLPPYY作线性方程组XCYXBXBYNINIII11共有PNPNPPN不全为矛盾,所有PP同理,负惯性指数QQ另推论如本例形式二次型,例秩RQP1112212211111211111221212221212211111211214,AAEXTATATAAOEAAXAAAXAEXEOAAAAAXAOEXEAAXAXAA235P补证明0设1112111121221111121121111212111210,AXAXAAAAXAAAAAAAAAA则取EOAAET即合要求12111P235,补5,若N1,显然A0若N2,A0,显然1100000,10101AAAO则成立【】由于A2仍为反对称故归纳假设A20001100110222TAT2,22101010110011000STTAECPPTTCAC取则证毕P235补,6由习题第10题57772,一定存在120,CTC当时C1EA永为正定取120000000000MAX,0,020,CCCCEACEA0XXCEAXCXXXAXXCEAXCXXXAXCXOXOXAXOCXOXOXXAXCXX推出所以D正定,即A正定,证毕P236补8,1,11100001AYAYAEAYFAYAYYYYYAY0,46765111值故对任一组题见习题第正定已知正定YPIAJCIA11120,0,0NYAFYYYAYAYAF是负定二次型2设1120,0NNNNAAAABBAA112111NNNNNNN1ABBAAAAAAQP3NNNNNNNNNNNNNNNNAAAAAAAPAAAQAPAACPAACA,122111122122332111111即则如此下去仍然证定4212222121111,IINKIKNNNNIIKIIINIKIIIATTTETAAT2ATATTTT作则正定且23612120000NNPD0ACCACDIDCADDDANULLNULL补9(必要性)可逆,1212111111,0,0,0,KKKKKKKIIIIIIIIIIIIIIIIGXXXFXXXAAGXXGAAA作则半正定,的矩阵为0011AA11121222211121NNNNNKNKKNNNNAAAAAADAAAAAA中的系数KA这样取到在0中主对角线上任取NK项中的的系数项所在的行和列,得一个K级子式含入DK,由于是KNKA即令中只能取所有的常数项的子式故的系数CDKCKN0,NKKDKDKD中的这正是的一个级主子式,要是的系数中的一元,故A为的所有K阶主子式之和,如1112NNAAAA等110,RKKKKAEMAAAEKBB现在考虑任意它的阶顺序主子式,为的右上角的M阶方阵,作0,00,0LIM0KIIKKIKKKBAIAABAEAEXXAEXXAEZXAXA由于的系数是的一切阶主子式之和,而的主子式仍为的主子式,由充分条件,因此正定,故对任何边续性所以半正定第六章线性空间习题解答P2671设,MNMNMMN证明N,XMXNMXMNMMNXMNXMMNMMNMMNM证XNXMNNMNXMNXNXMNXNMNN又或P2672证LMNMLNMLMNMLNM12XXMXNLXMXNXLXMNXMLXXMXNLXMXNXLXMNXMLX证左且且或或右反过来。证毕证左或或且且右。证毕1P2673不做成,因为2个N次多项式相加不一定是N次多项式,如122UUXXXXX做成,因为1122,FAGAHAHXFXGXKFAHAHXKFX为多项式为多项式,做成因为实对称反对称,上三角下三角之和之倍数仍为实对称反对称,上三角下三角故做成线性空间不做成,设|V为平面上不平行的向量不做成,违反定义351100,但这里。取即得矛盾。P26732111112121212211121,AKKKBKABAKAABBAABABANULL解显然V非空10以及2个封闭的代数运算02验证先设03RTKBARBABA,332221及21212112312123123123123231231223231231,2,AABBAARAAABBABAAAAAABBBAARAAABBBBAAAAA12312323121311111211121111111211111,300,0,00,00,4,0,001511,1111,2AAABBBAAAAAARABAABAABAABABAAABAABNULLNULLNU

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论