高频开关电源的基本原理.doc_第1页
高频开关电源的基本原理.doc_第2页
高频开关电源的基本原理.doc_第3页
高频开关电源的基本原理.doc_第4页
高频开关电源的基本原理.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一节 高频开关电源的基本原理一、高频开关电源的组成高频开关整流器通常由工频滤波电路、工频整流电路、功率因数校正电路、直流-直流变换器和输出滤波器等部分组成,其组成方框图如图1-3-1所示。图1-3-1高频开关整流器组成方框图图中输入回路的作用是将交流输入电压整流滤波变为平滑的高压直流电压;功率变换器的作用是将高压直流电压转换为频率大于20KHZ的高频脉冲电压;整流滤波电路的作用是将高频的脉冲电压转换为稳定的直流输出电压;开关电源控制器的作用是将输出直流电压取样,来控制功率开关器件的驱动脉冲的宽度,从而调整开通时间以使输出电压可调且稳定。从框图中可见,由于高频变压器取代了笨重的工频(50HZ)变压器,从而使稳压电源的体积和重量大小减小。开关整流器的特点:重量轻,体积小采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只上相控整流器的1/10,重量也接近1/10。功率因数高相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。经过校正的开磁电源功率因数一般在0.93以上,并且基本不受负载变化的影响(对20%以上负载)。可闻噪音低在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60dB。而开关电源在无风扇的情况下可闻噪声仅为45dB左右。效率高开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可做到91%以上。冲击电流小开机冲击电流可限制的额定输入电流的水平。模块式结构由于体积不,重量轻,可设计为模块式结构,目前的水平是一个2m高的19英寸(in)机架容量可达48V/1000A以上,输出功率约为60KW。二、高频开关电源的分类(二)开关整流器分类1、按激励方式可分为自激式和他激式。自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。自激式电路出现最早。它的特点是电路简单、响应速度较快,但开关频率变化大、输出纹波值较大,不易作精确的分析、设计,通常只有在小功率的情况下使用,如家电、仪器电源。他激式开关电源需要外接的激励信号控制才能使变换电路工作,完成功率变换任务。他源激式开关电源的特点是开关频率恒定、输出纹波小,但电路较复杂、造价较高、响应速度较慢。2、按开关电源所用的开关器件可分为双极型晶体管开关电源、功率MOS管开关电源、IGBT开关电源、晶闸管开关电源等。功率MOS管用于开关频率100kHz以上的开关电源中,晶闸管用于大功率开关电源中。3、按开关电源控制方式可分为脉宽调制(PWM)开关电源,脉频调制(PFM)开关电源,混合调制开关电源。4、按开关电源的功率变换电路的结构形式可分为降压型、反相型、升压型和变压器型。变压器型中按开关管输出电路的形式可分为了单端开关电源、双端开关电源。而双端开关电源又可分为推挽型、半桥型、全桥型。单端开关电源可分为单端正激型、单端反激型。除了上述几种类型外,还有一些改进型电路,如双端正激型等。第二节 开关整流器一、主电路电路如图1-3-2所示。交流输入电压经电网滤波、整流滤波得到直流电压,通过高频变换器将直流电压变换成高频交流电压,再经高频变压器隔离变换,输出高频交流电压,最后经过输出整流滤波电路,将变换器输出的高频交流电压整流滤波得到需要的直流电压。图1-3-2 典型主电路(1)交流输入滤波及桥式整流滤波电路电容C116、C117、C118,共模电感L102构成EMI(Eletromagnetic Interference电磁干扰)滤波器,其作用是:一方面抑制电网上的电磁干扰;另一方面它还对开关电源本身产生的电磁干扰有抑制作用,以保证电网不受污染。即它的作用就是滤除电磁干扰,因此常称作EMI滤波器。单相/三相市电经滤波后,再经全桥整流滤波,得到300V/500V左右的高压直流电压送入功率变换电路。(2)功率变换电路(DC/DC变换电路)300V/500V高压直流电送入功率变换器,功率变换器首先将高压直流电转变为高频交流脉冲电压或脉动直流电,再经高频变压器降压,最后经输出整流滤波得到所需的低压直流电。(3)次级滤波电路由于DC/DC全桥变换器输出的直流电压仍含有高频杂音,需进一步滤波才能满足要求。为此在DC/DC变换器之后,又加了共模滤波器。由高频电容C212、C213及电流补偿式电感L23组成的共模滤波器的直流阻抗很低,但对高频杂音有很强的抑制作用,使输出电压的高频杂音峰峰值降到200mV以下。二、控制电路(1)电压/电流取样电路电压/电流取样电路如图1-3-3所示:图1-3-3 取样电路整流模块的输出电压,经由取样支路(R205、RP21、R203、R204)的电位器RP21取样,送出采样电压(即反馈电压)Vf。分流器(取样电阻)FL01上的电压即为电流反馈信号If,作为限流和均流的取样信号。(2)反馈控制电路整流模块控制电路由电压闭环控制与电流闭环控制组合而成,其基本原理见图2-22。首先讨论稳压过程。从图2-22可见输出电压取样反馈信号Vf输入至PWM控制器内部的比较放大器的1脚,与2脚的电压基准信号Vref进行比较放大,得到误差信号。如果因某种因素使得输出电压升高,则Vf上升,因而9脚的电压降低,这将导致控制器输出的控制脉冲宽度变窄,即占空比变小,从而最终使得输出电压降低,完成负反馈稳压过程。电压基准电路见图1-3-4。图1-3-4 反馈控制电路接着分析恒流(也称限流)过程。从分流器取样而来的反馈信号If和电流基准信号Iref合成后输入U6的3脚,同时Iref也输入U6的2脚。当模块输出电流小于限流值时(调整电位器RV1可改变限流值),U6的3脚电平高于2脚电平,这时1脚呈高电平,二极管截止,电流环不起作用;当模块限流时(即模块输出电流达到限流值时),U6的3脚电平低于2脚电平,1脚呈低电平,二极管导通,从而拉低U7的9脚电平,最后使模块处于恒流状态,电压环不起作用。电流基准电路由图1-3-3中的U3等构成,正常工作时,当光耦不导通时,电流基准电平为5.5V左右,光耦饱和导通时,电流基准电平为2.55V左右。(3)电压、电流基准正常工作时U8(TL431)产生稳压基准,其电平为+5V,经过电阻分压输出基准信号Vref,电阻RX设有两档值,切换这两档就可以获得均充电压或浮充电压。调节RX便可调整均充或浮充电压。在图1-3-5中,Q12,Q13两PNP管起着较重要的保护作用。由于电压控制环的反应速度比电流控制环的反应速度快,如果没有Q12,Q13,当输出短路时电压控制环首先响应,工作占空比迅速变至最大,经过几个周期后电流控制环才起作用,把电流限制在一定范围。这样输出短路时对电路的冲击很大。本电路加了Q12,Q13后,在输出短路时,图1-3-3中电容C201通过二极管D202迅速放电,电压UB加到Q12、Q13基极,UB的下降使它们导通,迅速将电压基准电平和电流基准电平拉低,将输出电流限制得很小,使短路冲击的影响大大降低。另一方面,它还能起输出软启动的作用。模块开机时,输出滤波电容上的电压为0,所以模块建立电压的过程中电流很大。而输出电流是经开关管的,如果没有相应措施,开关管很容易在这个时候遭受过流冲击而损坏。开机时图1-3-3中电容C201上的电压UB为0,Q12、Q13导通,电压基准被拉得很低,变换器输出电压小。电容C201经由电阻R207慢慢充电,电压UB逐渐升高,由于Q12、Q13的作用,电压、电流基准逐渐升高,输出电压也逐渐升高。最后U8进入稳压状态,模块输出电压也达到额定值。这样就完成了输出软启动过程。图1-3-5 电压电流基准电路图(4)驱动电路如图1-3-6所示。现以其中一路驱动为例描述工作原理。驱动输入A、B为为互补对称关系。A为高电平时,由于互补关系,输入B为低电平,这时Q7、Q10导通,Q8、Q9截止。VCC1通过Q7,隔直电容C1,驱动变压器T10原边这条回路产生正向驱动脉冲,使功率管Q1开通。当驱动输入A转为低电平时,Q7、Q9截止,Q8、Q10导通。通过D8、隔直电容C1、驱动变压器T10原边,这条回路产生反向驱动脉冲。当变压器原边中的电流减小到0时,电容C1通Q8、变压器T10原边放电,继续维持等幅反向脉冲。另一路的工作原理相同。图1-3-6 驱动电路工作原理图第二节 功率变换电路功率变换电路是整个开关电源的核心部分,根据输出功率的大小,开关频率的工作范围,以及开关管上所承受的电压、电流应力的不同,功率变换电路有多种拓朴结构,下面介绍两种拓朴结构:双端正激变换器和全桥变换器。一、双端正激变换器电路结构如图1-3-7所示。基本工作原理图1-3-7 双端正激变换电路图1-3-8 双端正激电路状态1等效电路图1-3-9 双端正激电路状态2等效电路Q1、Q2由同一组驱动信号控制,同时导通或关断。其工作过程是:在Q1、Q2的控制端加一个高电平,开关管Q1、Q2导通,其等效电路如图1-3-8所示。这时,输入电压Ui全部加到变压器初级线圈两端,次级的感生电动势使D3导通,将输入电流的能量传送给电感L和电容C及负载,给电感L、电容C充电(电感电流IL增大,当超过负载电流Io时,电容电压Uc也开始增大,如图1-3-10所示);与此同时在变压器T中建立起励磁电流(INP与INS/n之差,如图1-3-10中的阴影所指示),即在变压器的励磁电感中存储能量。撤去Q1、Q2控制端的高电平,Q1、Q2关断,变压器的原、副边的极性立即反转,D3截止,其等效电路如图1-3-9所示。这时,电感L上的电压极性也反转,通过续流二极管D4向负载继续供电,当电感电流小于输出电流Io时,电容也向负载供电,见图1-3-10。另一方面,变压器中原边的电流如图1-3-9所示的方向流动,即磁化电流通过D1、D2将原先储存的能量回馈给电源Ui而去磁。同时D1、D2具有箝位作用,它们保证变压器原边的电压不超过输入电压Ui,能有效防止变压器漏感的电压尖峰对开关管的冲击。显然,在Q1、Q2再次导通之前,T中的去磁电流必须释放到零,即T中的磁通必须复位,否则,能量经几个周期叠加,将使变压器T发生饱和导致开关管损坏。这就要求占空比0.5。 图1-3-10 双端正激变换电路工作波形特性分析正激:开关管导通时,输入馈电给负载,截止时L供电给负载,因此称为正激式耐压:开关管最大电压为Ui变压器:变压器利用率不高(仅使用磁滞回曲线第一象限)应用:安圣电源HD4850和HD4820-5整流模块主电路二、全桥式变换电路基本工作原理图1-3-11 全桥式变换电路全桥式变换电路的结构如图1-3-11所示。输入电压为经整流后的直流电压Ui。工作时开关管分为Q1Q4和Q2Q3两组,由两组对称倒相的方波脉冲驱动,见图1-3-16中Ugs(Q1)、Ugs(Q2)的关系。C1的容量很大,时间常数远大于开关管的工作周期,在电路工作过程中,C1上的电压变化很小,在分析过程中可以当成导线。电路的工作过程是:(1)Q1Q4导通即Q1Q4的栅极激励信号为高电平,使Q1Q4导通(Q2Q3仍保持关断)。变换电路的等效电路如图1-3-12所示。这时输入电压Ui几乎完全加在变压器的原边,电流按箭头所示的方向流动。按图中所示变压器原副边的电压极性,整流二极管D6承受正偏压导通,整流二极管D5承受反向偏压而截止,即输入电压Ui通过变压器T和二极管D6给电感L,电容C2充电,并给负载供电,二极管D6的电流线性上升。电路的工作波形见图1-3-16。图1-3-12状态1(Q1、Q4导通)的等效电路(2)Q1Q4关断撤去激励信号,Q1Q4截止(Q2Q3仍保持截止),即四个开关管都不导通。这个状态下的等效电路如图1-3-13所示,其中RT为线圈内阻。这时变压器的极性突然反转为如图中所示的方向。副边的产生的反电动势、电感L的自感电动势使D5导通,继续给负载供电。另一方面,电感L还将通过D6续流。变压器的电感比储能电感L小得多,所以副边上的电动势很小(远小于Uo)。虽然对于D6来说,副边产生的反电动势有碍于它的导通,但它远小于电感L的电动势。而且线圈上有内阻RT,包含D5的上半回路的电流很大,在内阻RT上的压降抵消了上半部副边的正向电动势,使得D6正向偏置,因而电感L的自感电动势也使得D6导通,通过D6续流。从另一个角度来说,副边上的电压远小于Uo,因而原边的电压也小于Ui,原边上没有电流。如果D6不导通,则变压器只有上半部副边流过IL,IL远大于原来的励磁电流(原、副边的等效电流之差,与前面的双正激电路一样),而变压器铁芯中的磁通(磁能)不能突变的,因而势必要在下半部副边流过一定的反向电流来抵消掉一部分由上半部副边电流(流经D5的电流)所产生的磁通,即使得D6导通。这样,电感中的电流分成两路分别流经D5、D6续流,分配的比例与线圈内阻、变压器电感、励磁电流大小有关,总的来说ID5大于ID6。总之,Q1Q4截止时,D5、D6同时导通,给电感L续流。图1-3-13 状态2(Q1Q4关断)的等效电路(3)Q2Q3导通即Q2Q3的栅极激励信号为高电平,使Q2Q3导通(Q1Q4仍保持关断)。变换电路的等效电路如图1-3-14所示。这时输入电压Ui几乎完全加在变压器的原边,电流按箭头所示的方向流动。按图中所示变压器原副边的电压极性,整流二极管D5承受正偏压导通,整流二极管D6承受反向偏压而截止,即输入电压Ui通过变压器T和二极管D5给电感L,电容C2充电,并给负载供电,二极管D5的电流线性上升。电路的工作波形见图1-3-16。图1-3-14 状态3(Q2、Q3导通)的等效电路(4)Q2Q3关断撤去激励信号,Q2Q3截止(Q1Q4仍保持截止),即四个开关管都不导通。这个状态下的等效电路如图1-3-15所示,其中RT为线圈内阻。和状态三相同的道理,电感中的电流分成两路分别流经D5、D6续流,分配的比例与线圈内阻、变压器电感、励磁电流大小有关,总的来说ID6大于ID5。图1-3-15 状态4(Q2、Q3关断)的等效电路然后又回到步骤1,不断重复上述过程。整个工作过程的波形如图1-3-16所示。图1-3-11中的功率开关管都并接了一个二极管,在实际应用中,两者经常是做成一体的,大多数功率管内部并接换向二极管。它有两个作用:一是功率管截止时,换向二极管将开关管导通时漏感储存的能量回送到输入电源,同时箍位住漏感形成的尖峰电压;二是开关稳压电源在运行过程中,如果负载突然开路,变压器的漏感和分布电容形成的自激振荡有可能使功率管的源极电压瞬间高于漏极电压很多,使管子反向击穿。加入二极管后,通过箝位作用防止了功率管的反向击穿。电容C1是用来增强电路的平衡能力,它可以防止因功率管的特性差异而造成变压器磁芯饱和。两组开关管Q1Q4和Q2Q3的开关特性不可能完全一致,假设Q1Q4的开启的速度稍快一点,则势必造成给变压器原边供电的方波脉冲的正半周高电平的实际持续时间稍长。如果没有C1,则将出现变压器原边向下充电的时间在每个周期内都长于反向充电的时间,这使得变压器的没有完全去磁,几个周期的积累之后,必将使得变压出现磁饱和而使电路不能正常工作。接入C1后,则在第一个周期内,C1上的电压也没有恢复到0,而是有一个左正右负的电压。在下一个周期时,正向方波的电压被C1上的电压抵消一部分后才给变压器原边充电,线圈上的正向充电电压低,电流上升速度慢;反向方波的电压叠加了C1上的电压之后再给变压器原边充电,因而线圈的反向充电电压高,电流上升速度快,最终保证在以后的每个周期内正向、反向电流上升量相同,从而保证变压器完全退磁。 图1-3-16 全桥变换电路的工作波形(5)特性分析耐压:开关管承受的最大电压为Ui;变压器:变压器利用率高,使用磁滞回曲线第一、三象限;输出功率:输出功率比双正激高一倍;驱动电路:四级驱动电路需隔离,防止相邻桥臂直通。第三节 功率因数校正电路由于开关电源电路的整流部分使电网的电流波形畸变,谐波含量增大,而使得功率因数降低(不采取任何措施,功率因数只有0.60.7),污染了电网环境。开关电源要大量进入电网,就必须提高功率因数,减轻对电网的污染,以免破坏电网的供电质量。下面着重介绍单相有源校正、三相有源校正、无源校正的原理。一、单相有源校正传统的整流电容器输入方式在输入电压峰值时取一窄脉冲电流,使得电源从电网中直接得到的能量少,且电流波形中高次谐波丰富,其波峰因数高。从波峰因数一功率因数曲线可知,波峰因数越高,功率因数越低。 波峰因数Ipeak/Irms式中 Ipeak:瞬时脉冲电流值 Jrms:均方根电流值若在图1-3-17所示中加L滤波器则可使谐波分量减少,功率因数得到改善,此方式为“无源”滤波器方式。图1-3-17 无源功率因数校正原理图采用开关型变换技术,利用预调整器接收来自两个源的控制信息,即输入电流波形和输出电压反馈,然后由一乘法器将该信号处理产生一个预调整器的控制信号,使输入电流按正弦波规律变化,这种方式称为“有源”滤波方式。有源滤波方式的功率因数校正器也称为“有源”滤波器。有源滤波器的基本原理图和波形图,如图1-3-18(a)、(b)所示。具体工作过程如下:电流参考来自输入全波整流后的正弦电压,输出调整由正比于输出直流误差的因子乘以参考值所提供。整流后的类正弦信号用作控制电路的输入。峰值电流检测控制方式由于具有较高的品质因数和较低的输入电流,被认为是优良的控制方式。控制电路还应提供过压关机和峰值电流限制,以保护开关管。合适的工作频率能保持预调整器开关管损耗最低(允许电路在95效率工作),大多数损耗的产生是由于MOSFET漏源间电容充电切换和二极管的反向恢复电流所致。对于固定的工作频率,每个周期需要最小的”OFF”时间,即占空比要大,通常为95。占空比由在输入正弦波上瞬时电压值所决定(电感电流为零)。占空比越高,”干涸”点越低,谐波危害越少,功率因数越高。(a)(b)图1-3-18(a)、(b) 有源功率因数校正原理与波形二、三相有源校正 1、单相综合式 整流器输入为三个单相输入组成的三相,其有源校正可用三个单相有源校正电路组合。单相综合校正缺点是元件较多,可靠性较差,现在己逐渐不予采用。 2、三相一体化控制整流器输入为三相带零线或不带零线,其有源校正可用三相一体化的校正电路。下面介绍一种PWM谐波消除电路。电路原理及波形如图1-3-19所示。PWM谐波消除法就是将谐波中的低次分量转化为高次分量,从而只需使用很小的滤波器就可将其滤去。可见使用这种方法,能大大减小滤波器的体积,降低成本,功率因数也高,因而具有很高的实用价值。3、PWM一般分为以下几种方式: (1)等距脉宽PWM方式 即用同一直流电平切割三角载波就可以产生等距脉宽的PWM波形; (2)普通的正弦波调制PwM方式(SPwM) 即通过正弦波与三角载波比较产生的; (3)引入谐波的PWM法 即在原正弦波基准信号中加入一定比例的三次谐波(或其他谐波)分量; (4)最佳PwM法 该方式以消除多个低次谐波为目的; (5)新SPWM法 即三角载波对2轴对称,且在323范围内没有三角载波。这种方式的等效开关频率很高,且它的最大直流环节增益比一般的SPWM方式高。图1-3-19 PWM谐波消除电路原理图考虑PWM方式控制器设计的两个主要的技术指标是:l 调制指数M 它是调制波幅值B和载波幅值A之比,改变M 可以改变输出电压值;l 载波频率fc 改变fc就可以改变谐波成分,当fc增加时,谐波峰值就向高频端偏移。在设计中选择合适的PWM方式并考虑到上述两个参数的选用,可以设计出所希望的三相有源校正器的控制电路。三相有源校正器控制电路的原理并不复杂,其控制电路主要由锁相环路PLL、计数器、PWM波形存储器、PWM波形选择器和PWM波形合成器等组成。由PLL产生与电网同步且频率是电网频率的整数倍的时钟频率。该时钟频率计数器作为由EPROM组成的PWM波形存储器的地址信号,在PWM波形存储器中存储着不同M值下的PWM波形。通过PWM波形选择器选择出所需的M值(即电压值)的PWM脉冲,由于对称关系,实际上为PWM波形存储器中的某一种波形和它的短路脉冲波形进行综合,从而得到所需的脉冲。短路脉冲产生器用来产生短路脉冲,用短路脉冲迫使三相桥的上下臂短路,给电路续流,控制电路基本方框图如图1-3-20所示。图1-3-20 控制电路基本框图三、无源校正无源滤波器可用在单相或三相输入电路中,如图1-3-21(a)、(b)所示。其工作原理如下:(a)(b)图1-3-21无源校正原理与波形图中il:无电感时的电流波形;i2:有电感时的电流波形。i2峰值低于il峰值,即降低整流器负载的波峰因数,同时错开电压峰值,因而其瞬时功率是降低了的。如果输入回路串入一只高频电感器,通过选择合适的电感量,并保证满负载时其不会进入饱和状态,就能改善输入回路的非线性负载特性。(四)选择高功率因数校正器的最佳拓扑功率因数校正器电路能够提高电源利用率和满足IEC要求。它的电路拓扑主要有升压式、降压式与回扫式三种电路,用得最多的是升压式。升压式峰值开关电流约等于输入线路电流,而其输出电压比峰值输入电压高。降压式是断续工作方式,峰值开关电流大于线路电流几倍,一般只用在输出功率为150W左右的变换器中。图1-3-22所示为上述三种电路结构原理图。由于升压型具有下述优点,故在目前得到了广泛的应用。 输入电路中的电感人适于电流型控制; 电容器C储能大,体积小; 由于预调整器在电容器上保持高压,故维持时间长; 全输入电压范围内控制能保持有最高的功率因数; 输入电流无间断,且在输入开关瞬时最小,易于EMI滤波: 输入电感阻止快速的线路瞬变,大大提高了工作可靠性: 开关电压低于输出电压。图1-3-22 三种模式的功率因数校正电路原理图图1-3-23 升压型有源功率因数校正电路原理及波形图升压型电路简化形式,如图1-3-23所示。当开关元件MOSFET为ON时,反能量 储存在电感L中,MOSFETO为OFF时,通过二极管V供给负载,输出电压ERL不能从高于输入电压EIN的电压中取出。 输出电流和脉动电压可分别由下式表示:第四节 负荷均分电路一、负荷均分的概念一套开关电源系统至少需要两个开关电源模块并联工作,大的系统甚至多达数十个电源模块并联工作,这就要求并联工作的电源模块能够共同平均分担负载电流,即均分负载电流。均分负载电流的作用是使系统中的每个模块有效地输出功率,使系统中各模块处于最佳工作状态,以保证电源系统的稳定、可靠、高效地工作。负载均分性能一般以不平衡度指标来衡量,不平衡度越小,其均分性能越好,即各模块实际输出电流值距系统要求值的偏离点和离散性越小。国家有关标准和信息产业部入网要求其均分负载不平衡度5输出额定电流值。按照通信用半导体整流设备标准中描述的不平衡度,计算方法如下:1=(K1K)100%2=(K2K)100%n=(KnK)100%K1=I1/IH1K2=I2/IH2K1=I1/IH1Kn=In/IHnI1、I2IN为各台整流模块所分担的输出电流值,IH1、IH2INn为各台整流模块额定输出电流值,为n台整流模块输出电流总和,为n台整流模块输出电流额定值总和。目前,较好的开关电源系统的负载均分不平衡度为24%,如果在全负载变化范围内(一般20额定电流值)均满足这一要求尚属不易。大多数厂家生产的开关电源系统在全负载变化范围内负载不平衡度5,通常也能满足使用要求。(二)一种脉宽调制(PWM)型负载均分电路以往所采用的多种负载均分电路一般都是模拟信号取样,且通过外部导线来传输,具有以下几点不足:均分精度随负载大小变化且不易调整:均分性能稳定度欠佳;动态响应特性不好:参与均分的模块数受限。解决这些问题,必须考虑产生数字式负载均分信号,并解决其传输方式。DUM23和DUMl4系列开关电源采用PWM型均流方式,是一种数字式调整均流方式,具有均流精度高、动态响应特性好,抗干扰性较好,模块控制数多等优点。PWM型均流方式的基本电路原理图,如图1-3-24所示。图1-3-24中,Us为系统取样电压,Ur为系统基准电压,两者比较后产生误差电压UD,UD与三角波进行比较产生一脉宽调制方波信号,其波宽受UD大小控制。这个方波信号送至每个整流模块,再通过模块内光耦隔离整形放大后与模块电流IO比较。这个比较信号再与模块的电压参考值UREF叠加,从而发出电压U调节信号,改变模块的输出电压,从而调整模块输出电流,使每个模块的输出电流相等。此电路的关键特点有二:一是产生P1MbI信号,二是通过光耦隔离。前者解决数字式控制精确度高的问题,后者解决抗干扰性及同步传输无损耗问题。利用此均流控制方式,每套DuMl4电源系统可对100个整流模块进行监控,其均流不平衡度2.5%。下面的是在网上下载下来的原理 高频开关电源的组成与分类开关电源具有体积小、效率高等一系列优点,在各类电子产品中得到广泛的应用。但由于开关电源的控制电路比较复杂、输出纹波电压较高,所以开关电源的应用也受到一定的限制。电子装置小型轻量化的关键是供电电源的小型化,因此需要尽可能地降低电源电路中的损耗。开关电源中的调整管工作于开关状态,必然存在开关损耗,而且损耗的大小随开关频率的提高而增加。另一方面,开关电源中的变压器、电抗器等磁性元件及电容元件的损耗,也随频率的提高而增加。目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十kHz;采用MOSFET的开关电源转换频率可达几百kHz。为提高开关频率必须采用高速开关器件。对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。它可以极大地提高开关速度,原理上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。采用谐振开关方式的兆赫级变换器已经实用化。开关电源的集成化与小型化已成为现实。然而,把功率开关管与控制电路都集成在同一芯片上,必须解决电隔离和热绝缘的问题。11开关电源的基本构成开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。开关电源的基本构成如图1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。输出采样电路(R1、R2)检测输出电压变化,与基准电压Ur比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。图2是一种电路实现形式。DC/DC变换器有多种电路形式,常用的有工作波形为方波的PWM变换器以及工作波形为准正弦波的谐振型变换器。图1开关电源的基本构成图2开关型稳压电源的原理电路对于串联线性稳压电源,输出对输入的瞬态响应特性主要由调整管的频率特性决定。但对于开关型稳压电源,输入的瞬态变化比较多地表现在输出端。提高开关频率的同时,由于反馈放大器的频率特性得到改善,开关电源的瞬态响应问题也能得到改善。负载变化瞬态响应主要由输出端LC滤波器特性决定,所以可以利用提高开关频率、降低输出滤波器LC乘积的方法来改善瞬态响应特性。12开关型稳压电源的分类开关型稳压电源的电路结构有多种:(1)按驱动方式分,有自励式和他励式。(2)按DC/DC变换器的工作方式分:单端正励式和反励式、推挽式、半桥式、全桥式等;降压型、升压型和升降压型等。(3)按电路组成分,有谐振型和非谐振型。(4)按控制方式分:脉冲宽度调制(PWM)式;脉冲频率调制(PFM)式;PWM与PFM混合式。(5)按电源是否隔离和反馈控制信号耦合方式分,有隔离式、非隔离式和变压器耦合式、光电耦合式等。以上这些方式的组合可构成多种方式的开关型稳压电源。因此设计者需根据各种方式的特征进行有效地组合,制作出满足需要的高质量开关型稳压电源。2开关电源常用的电路类型21PWM变换器脉冲宽度调制(PWM)变换器就是通过重复通/断开关工作方式把一种直流电压(电流)变换为高频方波电压(电流),再经过整流平波后变为另一种直流电压输出。PWM变换器有功率开关管、整流二极管及滤波电路等元器件组成。输入输出间需要进行电气隔离时,可采用变压器进行隔离和升降压。PWM变换器的工作原理如图3所示。由于开关工作频率的提高,滤波电感L,变压器T等磁性元件以及滤波电容C等都可以小型化。对于PWM变换器,加在开关管S两端的电压us及通过S的电流is的波形近似为方波,如图4所示。占空比D定义为式中:Ts开关工作周期;ton一个开关周期内导通时间;toff一个开关周期内断开时间;对于这种变换器,有两种工作方式。一种是保持开关工作周期Ts不变,控制开关导通时间ton的脉冲宽度调制(PWM)方式,另一种是保持导通时间ton不变,改变开关工作周期Ts的脉冲频率调制(PFM)方式。图3PWM变换器的基本工作原理图4变换器开关工作的波形22隔离型变换器DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。(1)推挽型变换器与半桥型变换器推挽型变换器与半桥型变换器是典型的逆变整流型变换器,电路结构和工作波形如图5所示。加在变压器一次绕阻上的电压幅度为输入电压UI,宽度为开关导通时间ton的脉冲波形,变压器二次电压经二极管V1、V2全波整流为直流。图5(a)表示推挽型变换器的电路结构和工作波形,图5(b)表示半桥型变换器的电路结构和工作波形。如只从输出侧滤波器来看,工作原理和降压型变换器完全相同,二次侧滤波电感用于存储能量。如以图中所示的占空比来表示时,电压变换比m与降压型变换器相类似,即m=D/n式中n变压器的匝数比,n=N1/N2;N1为一次绕组的匝数;N2为二次绕组的匝数。(a)推挽型 (b)半桥型图5推挽型与半桥型变换电路(2)正激型变换器正激型变换器电路如图6所示,它是采用变压器耦合的降压型变换器电路。与推挽型变换器一样,加在变压器一次侧(一半)上的电压振幅为输入电压UI,宽度为开关导通时间ton的脉冲波形,变压器二次电压经二极管全波整流变为直流。电压变换比为m=D/n对于这种变换器,开关导通时变压器存储能量,一次绕组中的励磁电流达到:式中:IM1为绕组N1的励磁电感。图6正激型变换电路开关断开时,变压器释放能量,二极管V3和绕组N3就是为此而设,能量通过它们反馈到输入侧。开关一断开,绕组N1中存储的能量转移到绕组N3中,绕组N3的励磁电流为式中:N1、N2、N3为绕组N1、N2和N3的匝数。反馈二极管V3为导通状态时,变压器去磁。绕组N3的励磁电感LM3与绕组N1电感LM1的关系为LM3释放能量所需要的时间可由下式求出:为防止变压器饱和,在开关断开期间内变压器必须全部消磁,则tre(1D)Ts。(3)隔离型CuK变换器隔离型CuK变换器电路如图7所示。开关断开时,电感L1的电流IL1对电容C11充电,充电电荷量为Qoff=IL1toff图7隔离型Cuk变换电路同时C12也充电(二极管V导通),开关S导通时,二极管V变为截止状态,C12通过L2向负载放电,放电电荷为这时C11也处于放电状态。稳定状态时,电容C11充放电电荷量相等,则电压变换比为式中:n为变压器匝数比,n=N1/N2(4)电流变换器电流变换器电路如图8所示,它是逆变整流型变换器。图8(a)是能量回馈方式,开关S导通时S1、S2导通时刻见图8(a),电感器L的一次侧电压为UInTUO(nT=N1/N2),电感L励磁并储存能量;S断开时,储存在电感L中的能量通过二极管V3反馈到输入侧。若采用图示的占空比,则电压变换比为:式中:nL为反馈绕组的匝数比,nL=N3/N4对于图8(b)所示的变换器,两只开关同时导通时,加在电感L上的电压为UI,电感L励磁并储存能量。任意一只开关断开时,反向电压(nTUOUI)加到电感L上,电感L释放能量。其工作原理与升压型变换器类似,电压变换比为(5)全桥型变换器(a)能量回馈式(b)升压式图8电流变换电路全桥型变换器如图9如示,S1、S3及S2、S4是两对开关,重复交互通断。但两对开关导通有时间差。所以变压器一次侧加的电压UAB为脉冲宽度等于其时间差的方形波电压。变压器二次侧的二极管将此电压整流变为方波(UF),再经滤波器变为平滑直流电供给负载。图9全桥型变换电路电压变换比为m=D/n23准谐振型变换器在PWM电路中接入电感和电容的谐振电路,流经开关的电流以及加在开关两端的电压波形为准正弦波,这种电路被称为准谐振型变换器。图10表示出电流谐振开关和电压谐振开关的基本电路以及工作波形。图10(a)是电流谐振开关,谐振用电感Lr和开关S串联,流经开关的电流为正弦波的一部分。当开关导通时,电流is从0以正弦波形状上升,上升到电流峰值后,又以正弦波形状减小到零,电流变为零之后,开关断开,见图(a)波形。开关再次导通时,重复以上过程。由此可见,开关在零电流时通断,这样动作的开关叫做零电流开关(ZeroCurrentSwitch),简称为ZCS。在零电流开关中,开关通断时与电压重叠的电流非常小,从而可以降低开关损耗。采用电流谐振开关时,寄生电感可作为谐振电路元件的一部分,这样可以降低开关断开时产生的浪涌电压。(a)电流谐振式(b)电压谐振型图10准谐振开关电路图10(b)所示电路为电压谐振开关,谐振电容Cr与开关并联,加在开关两端的电压波形为正弦波的一部分。开关断开时,开关两端电压从0以正弦波形状上升,上升到峰值后又以正弦波形状下降为零。电压变为零之后,开关导通,见图(b)波形。开关再断开时,重复以上过程。可见开关在零电压处通断,这样动作的开关叫做零电压开关(ZeroVoltageSwitch),简称ZVS。在零电压开关中,开关通断时与电流重叠的电压非常小,从而可以降低开关损耗。这种开关中寄生电感与电容作为谐振元件的一部分,可以消除开关导通时的电流浪涌与断开时的电压浪涌。电流谐振开关中开关导通时电流脉冲宽度ton由谐振电路决定,为了进行脉冲控制,需要保持导通时间不变,改变开关的断开时间。对于电压谐振开关,开关断开时的电压脉冲宽度toff由谐振电路决定,为了进行脉冲控制,需要保持开关的断开时间不变,改变开关的导通时间。在以上两种情况下,改变开关工作周期,则谐振变换器就由改变开关工作频率进行控制。在图10所示电路中,开关电压或电流的波形为半波,但也可以为全波,因此谐波开关又可分为半波谐振开关和全波谐振开关两种。3功率电路主要元器件的选择与保护目前,在高频开关电源中应用最广泛的功率半导体器件有两类:双极型功率晶体管和功率金属氧化物场效应管。31功率晶体管的选择选择晶体管时,必须注意两个基本参数:第一个参数是晶体管截止时的耐压值,第二个参数是晶体管在导通时能承受的电流值。这两个参数的选择是由开关电源的类型决定的。(1)单端反激式变换器中开关晶体管的选择对图11所示的单端反激式变换器,晶体管的集电极与发射极之间最大耐压值式中:UI加到晶体管集电极的直流电压;Dmax最大工作占空比。为了限制晶体管的集电极电压,工作占空比值应取低一些,一般应低于50,即Dmax(a)原理图(b)波形图图11隔离单端反激式变换器电路晶体管饱和时的集电极电流可按下式计算Ic=I/n式中:I变压器二次绕组的峰值电流;n变压器一、二次绕组匝数比。Ic也可以用输出功率Po来表示。假定变换器的效率为0.8,最大占空间比Dmax为0.4,则Ic=6.2Po/UI(2)推挽式变换器电路中开关晶体管的选择对图12所示推挽式变换器电路,它实际上是由两个单端正激变换器电路构成。所以,在开关晶体管截止时,每只开关管上承受的电压限制在2UI以内,利用输出功率、效率、最大占空比,可推导出晶体管集电极工作电流的表达式如下:假定变换器的=0.8,Dmax=0.8,则集电极工作电流为(a)原理图(b)波形图图12推挽式变换器电路(3)半桥式变换器电路开关晶体管的选择图13所示半桥式变换器中,变压器的一次侧在整个周期中都流过电流,磁心得到充分利用,对功率开关管的耐压要求较低,决不会超过线路峰值电压。与推挽式电路相比,若输出相同的功率,则开关晶体管必须流过2倍的电流。在半桥式变换器电路中,因为变压器的电压已减少到UI/2,为了获得相同的功率,晶体管的工作电流将加倍。假定变换器的效率=0.8,最大占空比Dmax=0.8,则晶体管的工作电流为:半桥式变换器的另一个优点是:它可以自动校正变压器磁心偏磁,避免变压器磁心饱和。图13半桥式变换器电路在设计开关电源时,还应考虑的是使用双极型晶体管还是MOSFET管,这两种晶体管各有优缺点。二者相比较,双极型晶体管价格较低,而MOSFET管由于驱动电路简单,所以整个电路设计也比较简单。双极型晶体管有一个缺点,就是工作截止频率较低,一般在几十kHz左右,而MOSFET管的开关工作频率可达几百kHz。开关电源工作频率高就意味着设计出来的开关电源体积较小。提高开关电源的工作频率,这是当前开关电源设计的一个趋势。32功率晶体管的保护功率晶体管的保护有抗饱和、二次击穿等问题,这里重点介绍二次击穿的防止及RC吸收回路元件参数的选择方法。(1)正偏压的二次击穿要设计出一个工作稳定、可靠的开关电源,必须避免开关晶体管出现正向偏置状态下的二次击穿现象。图14表示晶体管集电极电流Ic与Uce间的关系图,曲线的轨迹代表的是晶体管可以工作的最大限度范围。在晶体管导通期间,落入安全区正向偏置的负载曲线认为是安全的,工作时不能超过厂家所提供的器件热限度和安全工作区。图14双极型晶体管安全工作区正向偏置的二次击穿现象是由若干个发热点引起的。这些发热点是由于晶体管在高压下电流的不均衡而造成的。它们分布在功率晶体管工作面上的许多地方,由于晶体管的基极发射极结间是负温度系数,这些发热点就增加了局部电流流动,电流越大,则产生功率越大,进而使得某一发热点的温度更高。由于集电极对发射极的击穿电压也是负温度系数,所以与上述结果相同。由此可见,如果加在晶体管上的电压不消失,电流就不会终止,集电极发射极结就会被击穿,而晶体管会由于无法抗拒高温而损坏。有一种防止正向偏压二次击穿的新方法:在制造晶体管时增加了发射极平衡技术,使用这种技术制造的晶体管可以工作在它本身允许的最大功率和最大集电极电压的条件下,而不必担心会产生二次击穿。应用这种技术的器件如图15所示。具体实现方法是在功率开关晶体管的基极再串接一个结型场效应管,场效应管起着基极平衡电阻的作用,其阻值随集电极对基极电压的变化而变化。当集电极电压变化时,能够维持恒定的功耗。图15 防止二次击穿的措施(2)反偏压的二次击穿当晶体管用作开关器件使用时,存储时间和开关损耗是两个重要的参数。如果不能有效地减少存储时间,变压器就会产生饱和,而且开关电源的调整范围就会受到限制。同时,对开关损耗必须进行控制,因为它影响着整个电源系统的工作效率。实际应用中,晶体管的反向偏置安全工作区(RBSOA)很有实用意义,如图16所示。图16反向偏置时安全工作区RBSOA曲线表示,对于Uce低于Uceo的情况,只受晶体管集电极电流Ic的限制。对Uce高于Uceo情况,集电极电流必须随所加的方向偏置电压的增加而减少。很明显,反向偏置电压Ueb是非常重要的,它对RBSOA的影响非常大。在开关晶体管加反向偏压时,因为关断时间会减少,应避免基极发射极结的雪崩现象发生。设计时可采用有箝位二极管的RC吸收回路以避免雪崩现象的发生。(3)开关晶体管的RC吸收回路由上面的讨论可见,开关晶体管工作在截止状态的瞬间,为了把存储时间减少到最低限度,一般采用加大反向基极电流的办法。但是如果Ib过大,会造成发射结的雪崩,而损坏晶体管。为了防止这种情况的发生,可采用RC吸收回路,RC吸收回路并联在开关晶体管的集电极发射极之间,在功率开关晶体管截止时给开关晶体管集电极电流分流,见图17。当晶体管V1截止时,电容C通过二极管V2被充电到工作电源电压E,当晶体管V1导通时,电容C经过电阻R放电。实际上,吸收回路消耗了一定量的功率,减轻了开关管的负担。如果没有吸收回路,这一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论