连杆机械机构课程毕业设计外文文献翻译、中英文翻译、外文翻译_第1页
连杆机械机构课程毕业设计外文文献翻译、中英文翻译、外文翻译_第2页
连杆机械机构课程毕业设计外文文献翻译、中英文翻译、外文翻译_第3页
连杆机械机构课程毕业设计外文文献翻译、中英文翻译、外文翻译_第4页
连杆机械机构课程毕业设计外文文献翻译、中英文翻译、外文翻译_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

录一 :中文文献  一、联动可能被定义为固体的,或链接,其中每一个环节,是连接通过引脚连接(铰链)或滑动关节至少有两个人组合。为了满足这一定义,必须形成一个联动层出不穷,或关闭,或一个封闭的链条链系列。很明显,有许多链接链的行为从为数不多的不同。这就提出了一个非常重要的问题,关于为运动中的一台机器传输给联动的适用性。这是否适当取决于链接的数量和接头数量。               二、自由度。一个三杆机构(含连在一起的三间酒吧)显然是一个僵化的框架,没有相对运动之间的联系是可能的。来描述一个四连杆机构,有 必要才知道之间的任何连接两个角度的联系的相对位置。  (包括固定链接 OQ 的,在图 5c机制四个环节,因此是一个四连杆机构。)这种联系是说,有一个自由度。两个角度都必须在指定的五杆机构的联系的相对位置,它有两个自由度  三、单自由度运动的联系,制约,也就是说,对所有的链接上所有的点都认为是固定的,确定的其他链接路径。路径是最容易掌握的或假设上的路径是必要的联系是固定的,然后移动的方式与约束兼容其他环节的可视化。  四、四杆机构。当一个约束联系的成员之一,是固定的,联动机制,执行变成了机器中的一个有用的机械功能 的能力。在针脚连接联系的输入(驱动器)和输出(跟随者)链接通常枢连接到固定的联系 ;连接链路(耦合器)通常不投入,也没有输出。由于任何一个链接可以是固定的,如果链接的不同长度,四个机制,用不同的输入输出关系,每一个都可以得到以四杆机构。这四个机制是说是基本的联动反转。  五、当最短的链接图 11(上)是固定的,链接 B 和 D 可以完成革命。这就是所谓的拖链接机制。如果曲柄在一个恒定速度 b 旋转,曲轴 D 将在同一方向旋转的速度也不同。通过自身或与其他机制系列,拉杆可以提供有用的运动效果。在图中,曲柄 B 是司机,在一个统一的旋转速度逆时针 ;曲柄 D 扫过的角度,这是只有 50 度扫描。这意味着,曲柄 d 将曲柄移动速度比 b 当移动从 B 到 B'和比  扫过的角度,这是只有 50 度扫描。这意味着,曲柄 d 将曲柄移动速度比 b 当移动从 B 到 B'和比 B 更 快速移动时来自 B 到 B 如果曲柄 D 组附加到一个沙在包装机英尺,例如,其议案,这与一些升油墨的比例几乎是停顿或停留,缓慢的部分可利用的,必须在一个缓慢的速度进行执行操作。  六、四杆机构第二反演得到利用最短的链接作为司机。如图(下),连一个可以显示完整的革命,而对面的链接,这可能是为 B, C 或 D,只能通过振荡角。这就是所谓的曲柄摇杆机构,它是产生振荡运动有快速回报的行动装置,结合有用的结果的事实,对于逆时针旋转的,振荡的 C 从 B 到 B 的对应角 1,而从 B'to 乙振荡对应 angle 2。由于曲轴在一个恒定的速度 旋转, 1 较大 than 2,摇臂将需要更长的时间由右摆动比其他的方式离开了。机器上做有益的工作只有在活跃的成员是在一个方向移动,快速回装置的成员迅速返回其初始位置。  七、在极端的立场所示,虚线在图(下),曲柄和连杆一个链路 B 一字排开(共线),如果 C 组的摇杆驱动程序,意味着将要进行的追随者提供链接过去这些死的立场。在脚踏式磨石脚踏板连接,连接 C 和砂轮轴连接答磨刀石的角动量是利用过去的死进行位置的链接。  八、在四杆机构,最短的链接是第三反演耦合器,以及其他运动的联系只能振荡。这就是所谓的双摇杆机构。  九、机构 综合。图形和分析方法,可以很容易地确定聘用的位移,速度,以及在一个联动机制的联系加速。设计,或综合的联系,以满足特定的要求是要困难得多。没有设计一个拖放链接机制,以满足输入与输出关系给予频谱已知的方法。认为做的最好的表现是调查一个特定的配置所选号码的特点,并挑选了最佳。  十、在曲柄摇杆机构的设计人员可以控制的摇杆和振荡,角度在一定程度上的快速回报率。曲柄摇杆位移,速度,和加速度不能关联  十一、如果在一个四杆机构的曲柄,总要在相同或旋转方向相反,如果他们轮换限于大大低于 180 度,它可能会关联曲柄在三,四轮换, 五,或即使是大量的职位。这两种方法的分析和图形制作提供的相关性   十二、图 12(左)显示了函数发生器,相关的曲柄旋转 b 在与旋转 60 度以上 D 系列曲轴 70 度的范围。这样的相关关系,以满足与 X 为Y = X2 的不同 从 1 到 6 和 Y 从 1 到 36。  b 的曲柄转动的机械模拟 X 的,而旋转曲柄 D 是 Y的模拟 X 和 Y之间的关系是准确的在 X= 1.19, 2.54, 4.46,和5.81;在它是错误的,但这个错误已经被最小化的其他职位上述精确点多的间距。  十三、函数发生器不是通常用来表示两个功能相关的变量,如 X 和 Y在图12(左)所示的规模通常不提供相应的值,他们已被添加到带出一个最重要特征函数发生器,即规模是统一的,也就是说,在平等的师毕业。这意味着,由于为 70 度,而 Y范围为 35,每两个度旋转曲柄 对应一个 Y的单位,如果 D是用来操作响应 B 信号 从一个阀门,相应的三维旋转到一个给定的 Y的变化是在同一个范围内的所有点。  十四、曲柄滑块倒置。当在一个四杆机构的引脚连接都是由一名滑动联合取代,一个有用的一些机制,可从产生的联系。在图 13(上)之间的联系 1 和 4是一个滑动的接缝,允许 4 座,在幻灯片中链接的插槽连接 1。这将不作任何区别,运动学,如果链路是在一个 4 孔或槽滑动链接 1。  十五、如果链接图 13(上) 1 是固定的,由此产生的曲柄滑块机构如图 13(中心)。这是一个往复引擎机制。该块 4 代表活塞 ;链接 1 所示,阴影,是块,它包含在 A 和汽缸的曲轴轴承 ;链接 2 是曲轴与 连杆连接 3。偏轴轴承是在 B 点,在三腕销轴承活塞的行程两次 AB 公司,扔的曲柄。   十六、曲柄滑块机构提供的手段转换成曲轴的,或在一台泵曲轴的旋转运动,旋转运动的活塞的运动用在往复式发动机活塞成一个移动式的议案。在图13(中心),当 B 在位置 B'时,会干扰连杆曲柄如果两个人在同一平面上。这个问题解决了发动机和水泵来抵消从曲轴轴承曲柄销轴承。通过使用一个地方的偏心和连杆机构曲柄,没有补偿是必要的和非常小的抛出可以得到。  十七、在图 13(下)在 B 点的偏轴轴承已成为一个巨大的圆形磁盘在 A 无所不能带有偏心或扔 AB 型。连杆偏心杆,已成为一个带的环绕和偏心幻灯片。在中部和底部图图 13 运动学等效的机制。通过固定链接 2, 3, 4 而不是链接 1,在图 13 个连锁有其他倒(上)获得。  十八、空间联系。所考虑的联系,到目前为止已全部平面,也就是说, 它们的运动一直局限在单一的平面或平行平面和轴平行,他们就可以了。空间之间的联系在三个层面,用于非平行轴之间传递运动。虽然一些使用多年的著名空间联动机制是特殊形式的联系,但直到 20 世纪 50 年代的约 kinematicians 发展成为严重的描述,分析和综合这些联系程序感兴趣。虽然在这一领域取得了一些进展,许多问题仍未解决。  十九、而一个平面连杆,或许可以用一个二维绘图和分析,并与平面的几何结构合成的,这不是一个空间的联系成为可能。至少有两种观点都是需要定义在三维空间的链接和其他方面复杂的速度和加速度分析。因此,空 间联系的分析涉及到高等数学的使用。  二十、在平面上的联系,只有两种类型的连接器或接缝,即针或关节铰链和滑动接头( crossheads)。由于需要 2 个元素,使联合, kinematicians 称之为运动“对。“因此,一针联合是一个旋转,或把对和一个滑动的接缝,是一个移动副。在空间上的联系还有另外一些对,即一对圆筒,它允许两个相对平移和旋转,螺旋对(螺丝和螺母),以及球形对(球窝关节)。   附录 1:英文文献  Linkages(连杆机构 ) 1  A linkage may be defined as an assemblage of solid bodies, or links, in which each link is connected to at least two others by pin connections (hinges) or sliding joints. To satisfy this definition, a linkage must form an endless, or closed, chain or a series of closed chains. It is obvious that a chain with many links will behave differently from one with few. This raises the vitally important question regarding the suitability of a given linkage for the transmission of motion in a machine. This suitability depends on the number of links and the number of joints. 2  Degrees of freedom. A three-bar linkage (containing three bars linked together) is obviously a rigid frame; no relative motion between the links is possible. To describe the relative positions of the links in a four-bar linkage it is necessary only to know the angle between any two of the links. (Including the fixed link OQ, the mechanism in Figure 5C has four links and is thus a four-bar linkage.) This linkage is said to have one degree of freedom. Two angles are required to specify the relative positions of the links in a five-bar linkage; it has two degrees of freedom. 3  Linkages with one degree of freedom have constrained motion; i.e., all points on all of the links have paths on the other links that are fixed and determinate. The paths are most easily obtained or visualized by assuming that the link on which the paths are required is fixed, and then moving the other links in a manner compatible with the constraints. 4  Four-bar mechanisms. When one of the members of a constrained linkage is fixed, the linkage becomes a mechanism capable of performing a useful mechanical function in a machine. On pin-connected linkages the input (driver) and output (follower) links are usually pivotally connected to the fixed link; the connecting links (couplers) are usually neither inputs nor outputs. Since any of the links can be fixed, if the links are of different lengths, four mechanisms, each with a different input-output relationship, can be obtained with a four-bar linkage. These four mechanisms are said to be inversions of the basic linkage. 5  When the shortest link a in Figure 11 (top) is fixed, links b and d can make complete revolutions. This is known as a drag-link mechanism. If crank b rotates at a constant speed, the crank d will rotate in the same direction at a varying speed. By itself, or in series with other mechanisms, the drag link can provide useful kinematic effects. In the figure, crank b is the driver, rotating counterclockwise at a uniform rate; crank d is the follower. Both cranks make a complete revolution in the same time, but while b sweeps out the angle , which is 150 degrees the follower d sweeps out the angle , which is only 50 degrees. This means that crank d will move more slowly than crank b when moving from B to B and more quickly than b when moving from B to B. If crank d were attached to a sha ft in a packaging machine, for example, the slow part of its motion, which with some l ink proportions is almost a pause or a dwell, could be utilized for performing operations that must be done at a slow speed.  6  The second inversion of the four-bar mechanism is obtained by using the shortest link a as the driver. As shown in Figure (bottom), link a can make complete revolutions while the opposite link, which may be either b, c, or d, can only oscillate through the angle . This is called the crank-rocker mechanism; it is a useful device for producing oscillatory motion combined with a quick-return action that results from the fact that for counter-clockwise rotation of a, the oscillation of c from B to B corresponds with angle 1 , while oscillati on from Bto B corresponds with angle2 . Since crank a rotates at a constant speed and 1 is greater than2 , the rocker will take longer to swing from right to left than the other way. On machines that do useful work only when the active members are moving in one direction, quick-return devices return the members quickly to their initial position. 7  In the extreme positions, shown dotted in Figure (bottom), the crank a and the coupler link b are lined up (collinear), and if the rocker c were the driver, means would have to be provided to carry the follower link a past these dead positions. On foot-operated grindstones the foot pedal is attached to link c and the grindstone shaft to link a. The angular momentum of the grindstone is utilized to carry the links past the dead positions. 8  On the third inversion of the four-bar mechanism, the shortest link a is the coupler; and the other moving links can only oscillate. This is called the double-rocker mechanism. 9  Linkage synthesis. Graphical and analytical methods can be readily employed for determining the displacement, velocity, and acceleration of the links in a linkage mechanism. The design, or synthesis, of linkages to satisfy specific requirements is much more difficult. There is no known method for designing a drag-link mechanism to satisfy a given spectrum of input-output relationships. The best that can be done is to survey the performance characteristics of a selected number of specific configurations and pick the optimum. 10  On the crank-rocker mechanism the designer can control the angle of oscillation of the rocker and, to a degree, the quick-return ratio. The crank and rocker displacements, velocities, and accelerations cannot be correlated. 11  If the cranks in a four-bar mechanism always rotate in the same or in opposite directions, and if their rotations are limited to considerably less than 180 degrees, it may be possible to correlate the crank rotations in three, four, five, or even a larger number of positions. Both analytic and graphic methods are available for making the correlations. 12  Figure 12 (left) shows a function generator that correlates the rotation of crank b  over a 60-degree range with the rotation of crank d over a 70-degree range. The correlation is such as to satisfy the relationship Y=X2, with X varying from 1 to 6 and Y from 1 to 36. The rotation of crank b is the mechanical analogue of X, while the rotation of crank d is the analogue of Y. The relation between X and Y is accurate at X=1.19, 2.54, 4.46, and 5.81; at other positions it is in error, but the error has been minimized by the odd spacing of the above precision points.  13  A function generator is not ordinarily used to indicate corresponding values of two functionally related variables such as X and Y. The scales shown in Figure 12 (left) are not usually provided; they have been added to bring out the most important feature of a function generator, namely, that the scales are uniform; i.e., graduated in equal divisions. This means that, since is 70 degrees and the range of Y is 35, each two-degree rotation of crank d corresponds with one unit of Y, and if d is used to operate a valve in response to a signal from b, the rotation of d corresponding to a given change in Y is the same at all points in the range. 14  Slider-crank inversions. When one of the pin connections in a four-bar linkage is replaced by a sliding joint, a number of useful mechanisms can be obtained from the resulting linkage. In Figure 13 (top) the connection between links 1 and 4 is a sliding joint that permits block 4 to slide in the slot in link 1. It would make no difference, kinematically, if link 4 were sliding in a hole or slot in link 1. 15  If link 1 in Figure 13 (top) is fixed, the resulting slider-crank mechanism is shown in Figure 13 (center). This is the mechanism of a reciprocating engine. The block 4 represents the piston; link 1, shown shaded, is the block that contains the crankshaft bearing at A and the cylinder; link 2 is the crankshaft and link 3 the connecting rod. The crankpin bearing is at B, the wrist pin bearing at C. The stroke of the piston is twice AB, the throw of the crank.  16  The slider-crank mechanism provides means for converting the translatory motion of the pistons in a reciprocating engine into rotary motion of the crankshaft, or the rotary motion of the crankshaft in a pump into a translatory motion of the pistons. In Figure 13 (center), when B is in position B, the connecting rod would interfere with the crank if  both were in the same plane. This problem is solved in engines and pumps by offsetting the crankpin bearing from the crankshaft bearing. By using an eccentric-and-rod mechanism in place of a crank, no offsetting is necessary and very small throws can be obtained. 17  In Figure 13 (bottom) the crankpin bearing at B has become a large circular disk pivoted at A with an eccentricity or throw AB. The connecting rod has become the eccentric rod with a strap that encircles and slides on the eccentric. The mechanisms in the center and bottom drawings of Figure 13 are kinematically equivalent. By fixing links 2, 3, and 4 instead of link 1, there other inversions of the linkage in Figure 13 (top) are obtained.  18  Space linkages. All of the linkages considered so far have been planar; i.e., their motions have been confined to a single plane or to parallel planes, and the shafts they connect have

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论