基于单片机的数字温度记录仪设计毕业设计.doc_第1页
基于单片机的数字温度记录仪设计毕业设计.doc_第2页
基于单片机的数字温度记录仪设计毕业设计.doc_第3页
基于单片机的数字温度记录仪设计毕业设计.doc_第4页
基于单片机的数字温度记录仪设计毕业设计.doc_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

题 目 基于单片机的数字温度记录仪设计 姓 名 学 号 所在学院 专业班级 指导教师 日 期 摘要随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于AT89S51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度采集和LED显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与AT89S51结合实现最简温度检测记录仪,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。关键词:AT89S51单片机 数字传感器DS18B20 显示器LED;ABSTRACT As the era of progress and development, microcontroller technology has spread to our life, work, scientific research, each domain, has become a more mature technology, this paper mainly introduces a AT89S51 MCU based on temperature measuring system, described in detail by using digital temperature sensor DS18B20 development temperature measuring system, focus on the process of the sensors in the single-chip microcomputer hardware connecting, software programming and each module system flow on the detailed analysis, part of the circuit also introduced one, the system is easy to realize the temperature gathering andLED display, and can according to need any set upper temperature, it USES up police is very convenient, with high precision, range wide, high sensitivity, small volume, low power consumption advantages, suitable for our daily life and work, agriculture of temperature measurement, also can be used as temperature processing modules in other systems, as embedded auxiliary extended to other main system. DS18B20 and realize the minimalist AT89S51 combining temperature detection recorder, the system structure is simple, strong anti-jamming capability, suitable for harsh environment temperature measurement on the site, have broad application prospect. Keywords: AT89S51 Digital sensor DS18B20 Display LED;第一章 绪论11.1单片机概述11.2 单片机的历史21.3单片机的应用领域21.4数字温度传感器简介4第二章 器件的选型52.1 AT89S51单片机52.2数字温度传感器DS18B2072.3 LED显示器件9第三章 硬件电路设计103.1设计方案的选定103.2 总体设计结构图113.3单片机最小系统设计123.4温度检测电路133.5温度报警电路143.6温度显示电路15第四章 软件系统设计164.1总程序流程图164.2报警模块流程174.3 模块流程设计18第五章 总结21致谢22附件 1 系统电路原理图23附录2 C语言程序如下所示24参考文献35第一章 绪论1.1单片机概述单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。单片机也被称为 微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端1的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。 1.2 单片机的历史单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。在发展MCU方面,最著名的厂家当数Philips公司。Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。1.3单片机的应用领域目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械了。因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。 单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴:一、在智能仪器仪表上的应用 单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。例如精密的测量设备(功率计,示波器,各种分析仪)。二、在工业控制中的应用 用单片机可以构成形式多样的控制系统、数据采集系统。例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。三、在家用电器中的应用 可以这样说,现在的家用电器基本上都采用了单片机控制,从电饭褒、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不在。四、在计算机网络和通信领域中的应用 现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。 五、单片机在医用设备领域中的应用 单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。 六、在各种大型电器中的模块化应用 某些专用单片机设计用于实现特定功能,从而在各种电路中进行模块化应用,而不要求使用人员了解其内部结构。如音乐集成单片机,看似简单的功能,微缩在纯电子芯片中(有别于磁带机的原理),就需要复杂的类似于计算机的原理。如:音乐信号以数字的形式存于存储器中(类似于ROM),由微控制器读出,转化为模拟音乐电信号(类似于声卡)。在大型电路中,这种模块化应用极大地缩小了体积,简化了电路,降低了损坏、错误率,也方便于更换。 七、单片机在汽车设备领域中的应用 单片机在汽车电子中的应用非常广泛,例如汽车中的发动机控制器,基于CAN总线的汽车发动机智能电子控制器,GPS导航系统,abs防抱死系统,制动系统等等。此外,单片机在工商,金融,科研、教育,国防航空航天等领域都有着十分广泛的用途。1.4数字温度传感器简介温度是我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。数字温度计采用进口芯片组装精度高、高稳定性,误差0.5%, 内电源、微功耗、不锈钢外壳,防护坚固,美观精致。数字温度计采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给处理单元,如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如25.0摄氏度,然后通过显示单元,如LED,LCD或者电脑屏幕等显示出来给人观察。这样就完成了数字温度计的基本测温功能。数字温度计根据使用的传感器的不同,AD转换电路,及处理单元的不同,它的精度,稳定性,测温范围等都有区别,这就要根据实际情况选择符合规格的数字温度计。第二章 器件的选型2.1 AT89S51单片机对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。AT89S51 是美国 ATMEL 公司生产的低功耗,高性能 CMOS8 位单片机,片内含 4kbytes 的可编程的 Flash 只读程序存储器,兼容标准 8051 指令系统及引脚。它集 Flash 程序存储器既可在线编程(ISP),也可用传统方法进行编程,所以低价位 AT89S51单片机可为提供许多高性价比的应用场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。单片机AT89S51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。AT89S51 单片机为40 引脚双列直插式封装,其引脚排列和逻辑符号如图2-1所示。AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。 一、主要特性: 8031 CPU与MCS-51 兼容;4K字节可编程FLASH存储器(寿命:1000写/擦循环); 全静态工作:0Hz-33MHz ; 三级程序存储器保密锁定; 128*8位内部RAM ;32条可编程I/O线 ;两个16位定时器/计数器 ; 6个中断源 ;可编程串行通道 ;低功耗的闲置和掉电模式 ;片内振荡器和时钟电路 。二、管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(记时器0外部输入) P3.5 T1(记时器1外部输入) P3.6 /WR(外部数据存储器写选通) P3.7 /RD(外部数据存储器读选通) P3口同时为闪烁编程和编程校验接收一些控制信号。 I/O口作为输入口时有两种工作方式,即所谓的读端口与读引脚。读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器。只有读端口时才真正地把外部的数据读入到内部总线。上面图中的两个三角形表示的就是输入缓冲器CPU将根据不同的指令分别发出读端口或读引脚信号以完成不同的操作。这是由硬件自动完成的,不需要我们操心,1然后再实行读引脚操作,否则就可能读入出错,为什么看上面的图,如果不对端口置1端口锁存器原来的状态有可能为0Q端为0Q为1加到场效应管栅极的信号为1,该场效应管就导通对地呈现低阻抗,此时即使引脚上输入的信号为1,也会因端口的低阻抗而使信号变低使得外加的1信号读入后不一定是1。若先执行置1操作,则可以使场效应管截止引脚信号直接加到三态缓冲器中实现正确的读入,由于在输入操作时还必须附加一个准备动作,所以这类I/O口被称为准双向口。AT89S51的P0/P1/P2/P3口作为输入时都是准双向口。接下来让我们再看另一个问题,从图中可以看出这四个端口还有一个差别,除了P1口外P0P2P3口都还有其他的功能。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 /PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。 /EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。 XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 XTAL2:来自反向振荡器的输出。 AT89SXX系列单片机实现了ISP下载功能,故而取代了89CXX系列的下载方式,也是因为这样,ATMEL公司已经停止生产89CXX系列的单片机,现在市面上的AT89CXX多是停产前的库存产品。 图2-12.2数字温度传感器DS18B20DALLAS 最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。温度测量范围为-55+125 摄氏度,可编程为9位12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。DS18B20 的性能特点如下:独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内适应电压范围更宽,电压范围:3.05.5V,在寄生电源方式下可由数据线供电温范围55125,在-10+85时精度为0.5零待机功耗可编程的分辨率为912位,对应的可分辨温度分别为0.5、0.25、0.125和0.0625,可实现高精度测温在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快测量结果直接输出数字温度信号,以一线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作以上特点使DS18B20非常适用与多点、远距离温度检测系统。DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列、各种封装形式如图 2-2 所示,DQ 为数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。当工作于寄生电源时,此引脚必须接地。其电路图 2-3所示: 图 2-2 图2-3 2.3 LED显示器件LED显示器内部由发光二极管组成段显示,数码管结构分为共阳极型和共阴极型 LED显示器及其接口如下图2-4: 图2-4 LED的工作原理共阴极结构中:所有发光二极管的阴极接在一起形成公共端COM,使用时COM端接低电平,当某段发光二极管的阳极接高电平时,则该段二极管发光显示字符。共阳极结构中:所有发光二极管的阳极接在一起形成公共端COM,使用时COM端接高电平,当某段发光二极管的阴极接低电平时,则该段二极管发光显示字符。在单片机应用系统中,一般要同时使用N片七段LED构成N位LED显示器。LED的公共端COM叫显示器的位选线,ag称为段选线,这样N位LED显示器有N根位选线,N*8根段选线(包括小数点位)。位选线控制LED的每一位是否显示,段选线控制每一位的显示字符,常用字符显示编码表如表21: 表21 显示字符 共阴段码共阳段码显示字符 共阴段码共阳段码0 3FH C0H A 77H 88H 1 06H F9H b 7CH 83H 2 5BH A4H C 39H C6H 3 4FH B0H d 5EH A1H 4 66H 99H E 79H 86H 5 6DH 92H F 71H 8EH 6 7DH 82H P 73H 8CH 7 07H F8H 40H BFH 8 7FH 80H 全灭 00H FFH 9 6FH 90H 80H7FH第三章 硬件电路设计3.1设计方案的选定该系统主要由温度测量和数据采集两部分电路组成,实现的方法有很多种,下面将列出三种在日常生活中和工农业生产中经常用到的实现方案。方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。方案二: 进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。方案三:采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成(热电偶的构成如图 3-1),热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D 转换电路,感温电路比较麻烦。 图 3-1 系统主要包括对A/D0809 的数据采集,自动手动工作方式检测,温度的显示等,这几项功能的信号通过输入输出电路经单片机处理。此外还有复位电路,晶振电路,启动电路等。故现场输入硬件有手动复位键、A/D 转换芯片,处理芯片为51 芯片,执行机构有4 位数码管、报警器等。从以上三种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。3.2 总体设计结构图温度计电路设计总体设计方框图如图3-2所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用4位LED数码管以串口传送数据实现温度显示。主 控 制 器LED显 示温 度 传 感 器单片机复位时钟振荡报警点按键调整 图3-2 本系统采用单片机作为微控制器,分为五个模块(如上图3.2):测温电路, 数码管显示,报警电路,复位电路和时钟振荡。单片机I/O口资源的利用:P1口作为数码管控制端输入,P2口作为测温电路测量温度值的输入,P2.1接蜂鸣器,P2.0接温度传感器DS18B20。采用12MHZ晶振。电源采用5V为单片机,LED,蜂鸣器供电。主要技术指标:准确度达微秒级,以市电220V50HZ为输入电源,工作温度-55125。本设计由DS18B20温度传感器芯片测量当前的温度并将转换后的结果送入单片机。然后通过AT89S51单片机驱动四位共阳极8段LED数码管显示测量温度值。如附录中本设计硬件电路图所示,本电路主要有DS18B20温度传感器芯片,四位共阳极数码管,AT89S51单片机及相应外围电路组成。其中DS18B20采用“一线制”与单片机相连。3.3单片机最小系统设计一、复位电路本复位电路采用上电复位,上电复位电路是种简单的复位电路,只要在RST复位引脚接一个电容到VCC,接一个电阻到地就可以了。上电复位是指在给系统上电时,复位电路通过电容加到RST复位引脚一个短暂的高电平信号,这个复位信号随着VCC对电容的充电过程而回落,所以RST引脚复位的高电平维持时间取决于电容的充电时间。为了保证系统安全可靠的复位,RST引脚的高电平信号必须维持足够长的时间。如3-3图所示 图3-3二、设置上下限电路本模块有四个按键来实现报警温度的设置功能,K1是用来进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s左右自动退出;按一下K3进入查看下限温度模式,显示1s左右自动退出;在调节上下限温度模式下,K2是实现加1功能,K1是实现减1功能,K3是用来设定上下限温度正负的,同时LED显示当前在调的报警温度值,当调整完毕后,按K4键退出调整程序,如3-4图所示 图3-4三、晶振电路 时钟是单片机的心脏,单片机各功能部件的运行都是以时钟频率为基准,有条不紊的一拍一拍地工作。因此,时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统的稳定性。常用的时钟电路有两种方式:一种是内部时钟方式,另一种为外部时钟方式。本文用的是内部时钟方式。如图3-5所示: 图3-53.4温度检测电路DS18B20 最大的特点是单总线数据传输方式,DS18B20 的数据I/O 均由同一条线来完成。DS18B20 的电源供电方式有2 种: 外部供电方式和寄生电源方式。工作于寄生电源方式时, VDD 和GND 均接地, 他在需要远程温度探测和空间受限的场合特别有用, 原理是当1 W ire 总线的信号线DQ(I/O) 为高电平时, 窃取信号能量给DS18B20 供电, 同时一部分能量给内部电容充电, 当DQ为低电平时释放能量为DS18B20 供电。但寄生电源方式需要强上拉电路, 软件控制变得复杂(特别是在完成温度转换和拷贝数据到E2PROM 时) , 同时芯片的性能也有所降低。因此, 在条件允许的场合, 尽量采用外供电方式。无论是内部寄生电源还是外供电,I/O口线要接5K左右的上拉电。在这里采用前者方式供电。DS18B20芯片连接电路如图3-6所示:图 3-6外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统。在开发中使用外部电源供电方式,毕竟比寄生电源方式只多接一根VCC引线。在外接电源方式下,可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC 降到3V 时,依然能够保证温度量精度。由于DS18B20 只有一根数据线,因此它和主机(单片机)通信是需要串行通信,而AT89S51 有两个串行端口,所以可以不用软件来模拟实现。经过单线接口访问DC18B20 必须遵循如下协议:初始化、ROM 操作命令、存储器操作命令和控制操作。要使传感器工作,一切处理均严格按照时序。3.5温度报警电路本设计的发挥部分,是加入了报警,如果我们所设计的系统是监控某一设备,一当设备的温度超过我们所设定的温度值时,系统会产生报警。报警时由单片机产生一定频率的脉冲,由P2.1引脚输出,P2.1外接一只PNP的三极管来驱动杨声器发出声音,以便操作员来维护,从而达到报警的目的。如图3-7所示: 图3-7 3.6温度显示电路显示若用数码管,要显示完整的温度值,一般会选用4位一体数码管,在显示子程序中,对数码管的段、位以动态扫描的方式根据当前需要显示的内容不断对其进行更新和配置,利用人眼的惰性效应达到动态显示的目的。如图3-8图3-8第四章 软件系统设计整个系统的功能是由硬件电路配合软件来实现的,当硬件基本定型后,软件的功能也就基本定下来了。从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系。二是执行软件(子程序),它是用来完成各种实质性的功能如初始化、读写、显示等。每一个执行软件是一个小的功能执行模块。这里将部分执行模块列出,并为每一个执行模块进行功能定义和接口定义。各执行模块规划好后,就可以规划监控程序了。41总程序流程图 软件的总体设计流程首先是初始化然后读取温度并显示在显示的同时判断温度显示值是否在上下限之内最后结束程序如图 4-1所示: 第四章 软件系统第四章 软件系统 图4-1 4.2报警模块流程在报警之前首先要设置上下限然后根据设置的值再由程序来执行并且报警装置运行,流程见图4-2: 图 4-2 4.3 模块流程设计一、DS18B20 初始化及程序相当于给DS18B20数据头的作用,DS18B20检测到初使化电平,准备开始接收或发送数据,另一方面,可根据DS18B20是否作出应答来检测它是否在总线上,初始化流程图见4-3: 图4-3 DS18B20的初始化程序void ds18b20_init()/ DS18B20初始化 DQ=1;DQ=0; /控制器向DS18B20发低电平脉冲ds18b20_delayus(30); /延时480sDQ=1;/控制器拉高总线,while(DQ); /等待DS18B20拉低总线,在60-240s之间ds18b20_delayus(20);/延时,等待上拉电阻拉高总线DQ=1;/提升数据线,准备数据传输;二、读DS18B20时序及程序在单总线上按照标准单总线的读时序,产生一个读单字节数据的操作事件,什么时候读,读些什么,由DS18B20这个单总线器件内部的数据协议和数据结构来决定。读DS18B20流程见图 4-4: 图4-4DS18B20字节读程序uchar ds18b20_read() /DS18B20 字节读取 uchar i;uchar d = 0;DQ = 1;/准备读;for(i=8;i0;i-)d = 1; /低位先发;DQ = 0;_nop_();_nop_();_nop_();DQ = 1;/必须写1,否则读出来的将是不预期的数据;if(DQ)/在12us处读取数据;d |= 0x80;ds18b20_delayus(10);return d;三、写DS18B20时序及程序在单总线上按照标准单总线的写时序,产生一个写单字节数据的操作事件,什么时候写,写些什么,由DS18B20这个单总线器件内部的数据协议和数据结构来决定(单总线的器件有很多种,操作协议和数据结构不尽相同,但写时序都是一样的)写DS18B20 流程见图4-5: 图4-5DS18B20字节写程序void ds18b20_write(uchar d)/ ds18b20字节写 uchar i; for(i=8;i0;i-) / 循环8次 DQ=0; / ds18b20置低电平 _nop_(); _nop_(); _nop_(); / 等待 DQ=d&0x01; ds18b20_delayus(5); DQ=1; / ds18b20置高电平 d = 1; /低位先发 第五章 总结 经过一段时间的毕业论文设计,终于完成了我的数字温度计的设计,虽然没有完全达到设计要求,但从心底里说,还是高兴的,高兴之余不得不深思呀!设计过程中我又回顾了大学三年所学的课程及相关知识。加深了对所学知识的理解。这为自己今后进一步深化学习,积累了宝贵的经验也培养了我运用所学知识解决实际问题的能力。通过这次课程设计我发现,只有理论水平提高了;才能够正确的指导实践。而且通过这次课程设计,我们更深刻的感受到了理论和实际的距离,也知道了理论和实际想结合的重要性。经过一个学期的学习,我们对单片机已经有了初步的认识,对于它的基本组成和结构已经有了简单的了解,这次的课程设计让我体会到很多东西,不仅仅是有关单片机基本知识的,更多的是自己动手能力和逻辑思维能力的锻炼,同时,我更是知道了自己的不足,有好多东西是需要好好学习的。其实要做出来做好这个课程设计是不容易的,是要付出很多心思的。一开始我根本摸不着头脑,也没有什么想法,对这个题目都没感觉,用汇编根本编不出大程序,后来我还是决定做相对熟悉的C语言来编写。于是,我就开始上网,去学校图书馆查询有关单片机的各种资料,每天一起来就是看书、查资料、编程、修改,写程序用了几天,还参考了好多参考书里设计实例的程序,加加减减的,还找同学指点,最后弄好了,在社会工程实践应用中,单片机开发系统的研制仍是一个热门话题,所以我想还是有必要再好好学习以下单片机的,这对我们以后的工作应是有好处的。总之,这次课程设计让我学会了很多,也收获了很多,我想我是满意的。从中我知道了任何事情都是从不懂到懂、从不熟练到熟练的过程,有问题并不可怕,关键是要找到方法去解决问题,思考、查资料、修改并勤于动手。最后,非常感谢在设计中给予过我帮助的老师和同学。温度传感器DS18B20外形像一个小三极管,硬件连接非常简单,应用非常方便。它不仅能测量温度,而且也是一个ADC转换器,它能将测得的温度信号直接转换成数字信号输入到单片机。硬件开销较小,相对需要复杂的软件进行补偿,DS18B20软件编程比较复杂,但是可以把复位、读和写3个基本操作的子程序看成是3个固定的基本模块。从这次的课程设计中,我真真正正的意识到,在以后的学习中,要理论联系实际,把我们所学的理论知识用到实际当中,学习单机片机更是如此,程序只有在经常的写与读的过程中才能提高,这就是我在这次课程设计中的最大收获。后记本文从开篇至定稿,从总体框架至细节的推敲,自始至终均得到指导老师童静的悉心教导与关怀,在此,我表示衷心的感谢!非常感谢老师百忙之中抽出时间多次指导我的论文,给我提出众多宝贵意见。同时,也非常感谢同学给我的帮助,在我思维匮乏时给予支持和开导,最终,在自己的努力和大家的帮助下,我完成了论文。从写论文的过程中,也学习到很多东西,了解到一些原本书本上没有的新知识,并且从大量的文献中,学会了如何整理材料,如何总结观点,如何汇集成文。写论文的过程是一个自我学习,自我完善,自我提升的过程,这是对我们大学的一次总结,也得另一个起点的开始。忙碌了一个月,毕业论文终于定稿了,曾经的付出和汗水也要出现端倪了。毕业论文的定稿,答辩的随后到来,意味着毕业日程的一天天临近,我也即将要离开美丽的湖北工业大学校园。几年前的我,带着满脸的幼稚和渴望来到此地求学,三年的坚持与执着,让我收获了可以受益一生的知识和教诲,更结识了很多的同学与朋友,有幸得到很多学识渊博老师的指导。而今已是时间渐逝,我也将离开母校踏上新的征程。由衷的感谢在湖北工业大学学习的日子里传授我知识和给予我指导帮助的所有老师,浓浓师恩,铭刻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论