积分变换习题解答.pdf_第1页
积分变换习题解答.pdf_第2页
积分变换习题解答.pdf_第3页
积分变换习题解答.pdf_第4页
积分变换习题解答.pdf_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

傅氏变换习题解答 习题一 1试证:若满足傅氏积分定理的条件,则有 ( )tf 00 ( )( )cos( )sinf tatdbtd + =+ 其中 1 ( )( )cos, 1 ( )( )sin af bf d d + + = = 证 ( )( )( ) jj 11 (cosjsin)cos 22 t f tfed edf td d + = ( )( ) ( ) 0 00 11 +coscos(cosjsin)jsin 2 1 +( )cos( )sinsinsin fdtdftd d atdbtdfd d t + + = =+ 因,。 ( )sincosftd d + 为 的奇函数( )coscosftd d + 为 的偶函数 2试证:若满足傅氏积分定理的条件,当( )tf( )tf为奇函数时,则有 ( )( )()dtbtf + = 0 sin 其中 ( )( )() 0 2 sinbfd + = 当为偶函数时,则有 ( )tf ( )( )()dtatfcos 0 + = 其中 ( )( )() 0 2 cosafd + = 证 设是奇函数 ( )tf ( )( ) jj 1 2 t f tfed ed + = ( )() j 1 cosjsin 2 t fd ed + = ( ) j 0 1 sin j t fd ed + = ( ) j 1 2j t bed + = 。 (( )b是的奇函数) ( )()( ) 0 1 cosjsinsin 2j btt dbtd + =+= 设是偶函数 ( )tf ( )( ) jj 1 2 t f tfed ed + = ( )() j 1 cosjsin 2 t fd ed + = ( )( ) j 0 1 cos 2 t aedatd + = ( )a是的偶函数。 (注也可由 1 题推证 2 题) 3在题 2 中,设,试算出( ) 1,| | 1 0,| | 1 t f t t = ( )a,并推证 0 ,| | 1 2 sincos ,| | 1 4 0,| | 1 t td t t + 证 是偶函数 ( )tf ( )( ) = + = sin2 0 1 sin2 cos 0 2t tdttfa ( )( ) + = + = d t tdat cossin 0 2 cos 0 f 所以 ( ) 0 | | 1 2 sincos0 1 | | 1 2224 0| | t t df tt t + 1 =。 习题二 1 求矩形脉冲函数 ,0 ( ) 0, At f t = 其他 的傅氏变换。 解 ( )=F( )( ) jj 0 tt f tf t edtAedt + = j ij 0 11 jjj t e ee AAA = 2 求下列函数的傅氏积分: (1) (2) (3) ( ) 22 2 1, 0,1 tt f t t 1 ( ) = 0,2sin 0, 0 tte t tf t ( ) 0,1 1,10 1,01 0,1 t t f t t t = ,|, 0 ,|,sin t tt tf 2 0 sin ,| |sinsin 2 1 0,| | ttt d t + = 解 (1)( )=tF( ) | |itt f teedt + = = ii 00 2cos2 2 tt tte e etdtedt + + = ()() () () () () ii ii 00 0 ii tt tt ee eedt + + + =+=+ + 22 112 ii =+= + ( )tf的积分表达式为 ( )( ) + = deFtf ti 2 1 () 22 12 cosisin 2 tt d + =+ + 22 0 2 cos td + = + 即 | | 22 0 cos 2 t t de + = + (2)( )=F( ) + + + =dte ee edtteetf t tt ttti ii | |i| | 2 cos ()()()() 00 1 i 11 i 11 i 11 i 1 00 1 2 ttt edtedtedtedt t + + + + =+ = () () () () () () () () 00 1 i 11 i 11 i 11 i 1 00 21 i 11 i 11 i 11 i 1 tttt eeee + + + 1 + + + + ()()()() 11111 2 1 i 11 i 11 i 11 i 1 =+ + 2 4 24 4 + = + ( )tf的积分表达式为 ( )( ) dedeFtf tti 4 2 i 4 42 2 1 2 1 + + + + = + + + = 0 4 2 cos 4 421 td 因此有 ( ) + = + + 0 | | 4 2 cos 22 cos 4 2 tetftd t (3)( )=F( )( ) ii sin tt f tf t edttedt + = () = 0 sinsini2sinicossintdttdtttt =()() + 0 1cos1cosidttt ()() + + = 1 1sin 1 1sin i 00 tt ()()()() 2 1 1sin1sin1sin1sin i + = 2 1 sin i2 = ( )tf的积分表达式为 ( )( ) + + = dedeFtf tti 2 i 1 sin i2 2 1 2 1 () + =+ = 0 22 1 sinsin2 sinicos 1 sini d t dtt 因此有 ( ) + = 0 2 |, 0 |,sin 2 21 sinsin t tt tfd t 4已知某函数的傅氏变换为( )tf( )=F sin ,求该函数( )tf。 解 ( )( )() + + += dttdeFtf t sinicos sin 2 1 2 1 i () 0 sin(1)sin 11sin1 cos 22 tt tdd + + = ()() + + + = 00 1sin 2 11sin 2 1 d t d t (*) 而由 + = 0 2 sin dx x x 得 当时,0u + = 000 2 sinsinsin dx x x du u u d u 当时,0 = = 1|, 0 1|, 4 1 1|, 2 1 t t t tf 5已知某函数的傅氏变换为 0 ( ) ()()F 0 =+,求该函数。 ( )tf 解 ( )( ) ii 00 11 ()() 22 tt f tFeded + =+ 00 -ii 0 cos 2 tt ee t + = 6求符号函数(又称正负号函数) 1,0 sgn 1,0| | t t t tt 的傅氏变换。 解 符号函数不满足傅氏积分定理的条件,显然不收敛。按照如下方式推广傅氏 变换的定义。首先注意到可取,且 |sgn | t dt + + / / ,0 ( )00 0 t n n t n et f tt et = = + + 0 ,则( )f t的频谱函数为 ( )F= ( ) 0/2 ii /20 22 ()() tt AA f ttA edttA e =+ dt ii 22 222 222i22i4 1 cos 22 AeeA 2 + + = 15求作如图所示的锯齿形波的频谱图。 h ( )tf t O T 2T 3T -T -3T -2T -3T ( )()Ttt T h tf -i-i -i 111 ()()()()( )() atu t aa f atf at edtf at ed atf u eduF aaa a + = ; 同理时,0a -i-i -i 111 ()()()()( )() atu t aa f atf at edtf at ed atf u eduF aaa a + = = ; 综上, 1 () | f atF aa = 。 4若( )=F,证明(象函数的位移性质) : ( )tf ( ) 0 1 j 0 () t Fef = 0 ()Ft,即( ) 0 j t ef t 。 = 证 ( )( )( ) 000 jjj()j 0 ( tttt ef tef t edtf t edtF ) + = 。 5若( )=F,证明(象函数的微分性质) :( )tf( ) d F d =( ) jtf t。 证 ( ) d F d =( )( )( ) jjjt j tt dd f t edtf tedttf t edt dd + = ( )tf t j。 6若( )=F,证明(翻转性质) ( )tf ()=F()ft 证 ()( ) () () ()() () iitt Ff t edtft edt + = =() i t ft edt + = ()ft 。 7若( )=F,证明:( )tf 00 1 ( )cos ()() 2 f ttFF 0 =+, 00 1 ( )sin ()() 2j f ttFF 0 =+。 证 ( )( )( ) 00 00 jj j()j()j 0 1 ( )cos 22 tt ttt ee f ttf tedtf t edtf t ed + + + t =+ 00 1 ()() 2 FF=+; ( )( )( ) 00 00 jj j()j()j 0 1 ( )sin 2j2j tt ttt ee f ttf tedtf t edtf t edt + + = 00 1 ()() 2j FF=+。 8利用能量积分 2 1 ( )|( )| 2 2 f tdtFd + = ,求下列积分的值: (1) 2 1 cosx dx x + ; (2) 4 2 sin x dx x + ; (3) 22 1 (1) dx x + + ; (4) () 2 2 2 1 x dx x + + 解 (1) 2 1 cosx dx x + =2 2 2 2 sin sin 2 x x dxdx xx + = + = 2 1 d x x 2 sin (*) dx x xx dxe x x x x x + + = 0 i cossin 2 sinsin ()() dx x xx + + = 0 1sin1sin (*) 再由 2 sin 0 = + dx x x 得 () = 时,; 1212 ( )( )()0Rf t f td + =+ t= 当0a + + (2) (2) ( )( ) . 4 42 20 , 0 , 1 , 3 = 0, 01 0, 01 , 0 , 1 1 te te eu t t t 所以 &( )( ) + + = 00 1 s dtedtetftf stst (12)利用& 2 1 2 1 2 1 2 1 ss t = = 及位移性质 &( )=tf& 3 3 = s t e t 2若& ( )( )f tF s=,为正实数,证明(相似性质)&a 1 ()( ) s f atF aa =。 证 & 00 11 ()()()()( ) sat st a s f atf at edtf at ed atF aa + = a 3若& ( )( )f tF s=,证明 ( )( )n Fs =&(,Re。特别& (,或)( ) n tf t( ) s c)( )tf tF s= ( )f t = 1 t &,并利用此结论,计算下列各式: 1 ( )F s (1) 3 ( )sin2 t f tte=t,求; (2)( )F s 3 0 ( )sin2 t t f ttetd = t,求; ( )F s (3) 1 ( )ln 1 s F s s + = ,求( )f t; (4) 3 0 ( )sin2 t t f ttet =dt,求。 ( )F s 解 ( )( )n Fs= n n d ds & ( )f t 000 ( ) ( )()( ) nn ststnst nn dd f t edtf t edttf t edt dsds + = - 6 - &(,Re。 )( ) n tf t( ) s c (1)利用公式&( )( )sFttf= &( )=tf 3 sin2 t d tet ds = & 3 sin2 t et 222 2 24( (3)2 (3)4 s s s + = = + + 3) (2)由积分性质 & s de t 1 2sin 0 3 = & ()43 21 2sin 2 3 + = ss te t 再由像函数的微分公式 &( )=tf& () + = 43 2 2sin 2 0 3 ssds d det t () () 2 2 2 2 43 131232 + + = ss ss (3) 2 11 ( )ln2 11 s F s ss + = = & 2 inh tt t s,知 2 ( )sinhf tt t = (4)&( )=tf 3 0 1 sin2 t t tetdt s = &tte t 2sin 3 () () 2 2 43 34 + + = ss s 4若& ( )( )f tF s=,证明& ( ) ( ) s f t F s ds t = ,或( )f tt=& 1 ( ) s F s ds 。并利用此 结论,计算下列各式: (1) sin ( ) kt f t t =,求; (2)( )F s 3 sin2 ( ) t et f t t =,求; ( )F s (3) 2 ( ) (1) s F s s = 2 ,求( )f t; (4) 3 0 sin2 ( ) t te t f tdt t =( )F s,求。 解 000 ( ) ( )( )( ) ststst sss f t F s dsf t edtdsf t edsdtedt t + = & ( )f t t (1)&( )=sF sin s kt t = &sinkt du 22 arctan |s s ku du ukk = + arctan 2 s k =arccot s k = (2)&( )=sF = s t t te2sin 3 &dute t 2sin 3 () + = + = ss u du u | 2 3 arctan 43 2 2 2 3 arctan 2 + = s 2 3 cotarc + = s (3)&( )ttf= () 1 2 2 1 s u dut u = & s u1 1 2 1 2 1 t=&() tt eet ss = + 4 1 1 1 4 1 1 1 4 1 1 t t sh 2 = - 7 - (4)&( )=sF s d e t 12sin 0 3 = & t te2sin 3 = s s 1 & + = s t du us dute 4)3( 21 2sin 2 3 2 3 cotarc 1 2 3 arctan 1 | + = + = = s s u s su 5计算下列积分: (1) + 0 2 .dt t ee tt (2) + 0 cos1 dte t t t (3) + 0 coscos dt t ntebte mtat (4) (5) (6) .2cos 0 3 + tdte t . 0 2 + dtte t .2sin 0 3 + tdtte t (7). sinsh 0 2 + dt t tte t (8). sin 0 2 + dt t te t (9) .sin 0 3 + tdtet t (10) + 0 2 2 sin dt t t . (11) 0 erf. t et + dt (12) 0 0 J ( ).t dt + 其中 2 0 2 erf t u te = du称为误差函数, 2 0 2 0 ( 1) J ( ) ( !)2 k k k t t k + = = 称为零阶贝塞尔(Bessel)函 数。 解 (1)由公式 ( ) + = 00 dt t tf &得 ( )dstf + = 00 2 dt t ee tt &ds ss dsee tt + + = 0 2 2 1 1 1 2ln 2 1 ln |0= + + = s s (2) + = 00 cos1 t e t &()dste t cos1 () + + + = 0 2 11 1 1 1 ds s s s () 2ln 2 1 11 1 ln |0 2 = + + = s s (3) + = 00 coscos dt t ntebte mtat &dsntebte mtat coscos ()() ds nms ms bas as + + + + = 0 2 2 2 2 () () | 0 2 2 2 2 ln 2 1 = + + = s nms bas 22 22 ln 2 1 ba nm + + = (4)已知 & + + = 0 2 4 2cos2cos s s dtett st ,因此 + = = + = 0 3 2 3 13 3 4 2cos s t s s tdte (5)& + = 0 2 dtte t 4 11 2 2 2 = = = s s s t (6)已知& 4 2 2sin 2 + = s t再由微分性质& () 2 2 2 4 4 4 2 2sin + = + = s s s tt 得 () + = = + = 0 3 2 2 3 169 12 4 4 2sin s t s s tdtte ( ) + = 00 2 sinsh 7dt t tte t &dst ee e tt t sin 2 2 = 0 2 1 & ()() dstete tt sinsin 1212+ ()() ds ss + + = 0 22 112 1 112 1 2 1 ()() += | 00 12arctan12arctan 2 1 ss - 8 - ()()12arctan12arctan 2 1 += 8 1arctan 2 1 = (8) + = 00 2 sin dt t te t & = 0 2 2 1 sindste t &()dste t 2cos1 () () |0 20 2 41 1 ln 2 1 41 1 1 1 2 1 + + = + + + = s s ds s s s 5ln 4 1 = (9)已知&, 1 1 sin 2 + = s t利用微分性质& () 4 2 3 2 3 4 2424 1 1 sin + = + = s ss s tt + = 0 3 sintdtet t & () 0 4 2424 sin 1 4 2 3 1 3 = + = = = s s s ss tt (10) + = 00 2 2 2 1 sin sin dt t tdt t t + =+= 000 2 2sin2sinsin | dt t t dt t t t t = 0 & + = 0 4 2 2sinds s dst 22 arctan |0 = s (11) 0 erf t etdt + = & 1 1 12 erf() 21 s s t s s = = = + (12) & 0 0 J ( ) t dt + = 0 0 2 0 1 J ( )1 1 s s t s = = = + 6求下列函数的拉氏逆变换. (1)( ). 4 1 2 + = s sF (2)( ). 1 4 s sF= (3)( ) () . 1 1 4 + = s sF (4)( ). 3 1 + = s sF (5)( ). 9 32 2 + + = s s sF (6)( ) ()().31 3 + + = ss s sF (7)( ). 6 1 2 + + = ss s sF (8)( ). 134 52 2 + + = ss s sF 解(1)&( )=tf( ) 2 1 1 = sF&t s 2sin 2 1 4 2 2 1 = + (2)&( )=tf ! 3 11 4 1 = s & 3 13 1 6 1! 3 t s = + (3)由& 3 4 1 6 11 t s = 及位移性质&()( )tfeasF at = 1 得 ( )=tf&( )= sF 1 & () t et s = + 3 4 1 6 1 1 1 (4)&( )=tf( )= sF 1 & t e s 31 3 1 = + (5)&( )=tf( )2 1 = sF&+ + 9 2 1 s s &tt s 3sin3cos2 9 3 2 1 += + - 9 - (6)&( )=tf( )= sF 1 ()() + + 31 3 1 ss s =& 2 3 1 1 3 3 2 1 1 = + ss & 2 1 3-s 1 1 & + 1 1 1 s tt ee = 2 1 2 3 3 (7)&( )=tf( )= sF 1 = + + 6 1 2 1 ss s & + + 3 2 2 3 5 1 1 ss 5 3 =& 5 2 2 1 1 + s & tt ee s 321 5 2 5 3 3 1 += + (8)&( )=tf( )= sF 1 = + + 134 52 2 1 ss s & () () + + 2 2 1 32 122 s s 2=& () ()3 1 32 2 2 2 1 + + + s s & () + 2 2 1 32 3 s () 222 11 2cos3sin36cos3sin3 33 ttt etetet =+=+t 7求下列各图所示函数( )f t的拉氏变换. ( )f t A A o23 4 t o t ( )f t 2 4 6 3 5 (1) (2) o t ( )f t 2 4 6 8 2 o t ( )f t 1 2 3 2 3 4 (3) (4) (1) 由图易知,是周期为( )tf2的周期函数,在一个周期内 - 10 - ( ) ,0 ,2 At f t At &( ) 2 2 0 1822 (4) s kss k e f tee ssss = = (4)由图易知 0 ( ) ( )()(2 )( k )f tu tu tu tu tk = =+= ?( )0s ,当Re时 &( ) 0 1111 (1 coth) 12 ks s k s f te sses 2 = =+ 习题三 1设 1( ) f t, 2( ) f t均满足拉氏变换存在定理的条件(若它们的增长指数均为c) ,且 & 11 ( )( )f tF s=,& 22 ( )( )f tF s=,则乘积 12 ( )( )f tf t的拉氏变换一定存在,且 & j 1212 j 1 ( )( )( )() 2 j f tf tF q F sq dq + = 其中c,Re( ) sc+。 证 由于均满足拉氏变换存在定理的条件以及增长指数均为,知乘积( )( )tftf 21 , 0 c( ) ( )tftf 21 也一 定满足拉氏变换存在的定理的条件且增长指数为根据拉氏存在定理的证明当.2 0 c 0 c时, &( )( )( )( ) 1212 0 st ftftft ft edt + = 在 0 Recs+上存在且一致收敛.由于 ( )( ) i 11 i 1 2 i qt ftF q + = e dq 而 &( )( )( )( ) 1212 0 st ftftft ft edt + = ( )( ) i 12 0i 1 2 i qtst F q e dqft edt + = - 11 - ( )( ) i () 12 i0 1 2 i s q F qft edtdq + + = ( )() i 12 i 1 2 i F q Fsq dq + = 2求下列函数的拉氏逆变换(像原函数) ,并用另一种方法加以验证. (1)( ). 1 22 as sF + = (2)( ) ()().bsas s sF = (3)( ) ()()2bsas cs sF + + = (4)( ) () 2 22 22 2 as as sF + + = (5)( ) () . 1 322 sas sF + = (6)( ) ()()bsass sF + = 1 (7)( ). 1 44 as sF = (8)( ) ()2 2 1 12 + = ss ss sF (9)( ) ().1 1 22 = ss sF (10)( ) ()()41 22 + = ss s sF (1)解法 1 ( )=tf&( )= sF 1 + 22 1 1 as a aa 1 =& a at as asin 22 1 = + 解法 2 ( ) + + + =i,Resi,Res 2222 a as e a as e tf stst a at a e a e atat sin i2i2 ii = 解法 3 ( )=tf&= + 22 1 1 as & + i 1 i 1 i2 1 1 asasa i2 1 a =(& i 1 1 as & + i 1 1 as )() a at ee a atat sin i2 1 ii = (2)解法 1 ( )=tf&( )= sF 1 ()() bsas s 1 ()()()() + =b bsas se a bsas se stst ,Res,Res () btat btat beae baab be ba ae = + = 1 解法 2 ( )=tf&( )= sF 1 ()() bsas s 1 =& bs b as a ba 1 1 ba = 1 (& ab as 1 1 & bs 1 1 () btat beae ba = 1 (3)解法 1 ( )=tf&( )sF 1 () ()() () ()() + + + + + =b bsas ecs a bsas ecs stst ,Res,Res 22 () () bs st at e as cs ds d ab eac = + + + = 2 ()() btbtat e ba ca te ba bc e ba ac + + = 22 解法 2 &( )=tf( )= sF 1 & ()() + + 2 1 bsas cs =& ()()() + + + + + 222 1 111 bsba bc bsba ca asba ac ()2ba ac = & ()2 1 1 ba ca as + + & ba ac bs + + 1 1 & () + 2 1 1 bs - 12 - ()() btbtat te ba bc e ba ca e ba ac + + = 22 (4)解法 1 &( )=tf( )= sF 1 () + + 2 22 22 1 2 as as =& + + + 2222 1 2 1 2 3 as s as a a a2 3 =& 2 1 22 1 + + as a & + 22 1 as s attat a cos 2 1 sin 2 3 = 解法 2 ( )=tf&( )sF 1 ()() + + + + + =i, 2 Resi, 2 Res 2 22 22 2 22 22 ae as as ae as as stst ()() i 2 22 i 2 22 i 2 i 2 as st as st e as as ds d e as as ds d = + + + + =tatatata tee a tee a iiii 4 1 i4 3 4 1 i4 3 = attat a cos 2 1 sin 2 3 = (5)解法 1 ( )=tf& () 2322 1 11 asas = + & () + 223 1 11 asss ( 1 2 a =& 3 1 1 s & () ) 1 22 1 + ass = t t a 0 3 2 2 1 ( 1 &) 1 22 1 dt as + 3 2 0 111 sin 22 t ta aa = tdt () 3 24 11 1 cos 2 ta aa =t 解法 2 &( )=tf () + 322 1 1 sas ()()() + + + + + =i,Resi,Res0 ,Res 322322322 a sas e a sas e sas e ststst ()()3 i 3 i 0 222 2 ii2ii22 1 aa e aa e as e ds d tata s st + + = = ()at a t a cos1 1 2 1 4 2 2 = (6)解法 1 ( )=tf& ()() + bsass 1 1 =& ()() + + + bsbabasbaasab 111111 1 = ab 1 & ()baas + 11 1 & ()babas 1 + 1 1 & + bs 1 1 ()() btat e bab e baaab += 111 解法 2 &( )=tf ()() + bsass 1 1 ()()()()()() + + + + + =b bsass e a bsass e bsass e ststst ,Res,Res0 ,Res - 13 - ()() btat e bab e baaab += 111 (7)解法 1 ( )=tf& 44 1 1 as =& + + 2233 1 2 111 4 1 as a aasasa ()at a ee a atat sin 2 1 4 1 33 = ()atat a sinsh 2 1 3 = 解法 2 ( )=tf& 44 1 1 as + + + =i,Resi,Res,Res,Res 44444444 a as e a as e a as e a as e stststst ()()3 i 3 i 33 i4i444a e a e a e a e tataatst += ()atat a sinsh 2 1 3 = (8)解法 1 ( )=tf& () = + 2 2 1 1 12 ss ss & () + + 2 1 1 2 1 21 sss =&+ s 1 1 &+ 1 2 1 s & () 2 1 1 2 s tt tee221+= 解法 2 ( )=tf& () + 2 2 1 1 12 ss ss ()() + + + =1 , 1 12 Res0 , 1 12 Res 2 2 2 2 stst e ss ss e ss ss 1 2 12 1 = + += s st e s ss ds d tt tee221+= (9)解法 1 ( )=tf&( )= sF 1 () 1 1 22 1 ss =&()tee sss tt = + 2 11 1 1 1 1 2 1 2 1 tsht= 解法 2 ( ) ()()() + + =1, 1 Res1 , 1 Res0 , 1 Res 222222 ss e ss e ss e tf ststst tt ee s e ds d tt s st =+ = = s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论