厦门大学嘉庚主楼中央空调系统整改办法.doc_第1页
厦门大学嘉庚主楼中央空调系统整改办法.doc_第2页
厦门大学嘉庚主楼中央空调系统整改办法.doc_第3页
厦门大学嘉庚主楼中央空调系统整改办法.doc_第4页
厦门大学嘉庚主楼中央空调系统整改办法.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

厦门大学嘉庚主楼中央空调系统整改办法摘要: 介绍了厦门大学嘉庚主楼中央空调系统的系统形式,并且介绍了实际使用中出现的问题及相应的整改办法。 关键词: 空调设备 冷源 空调水系统一工程概况:厦门大学嘉庚楼群为一主四从的建筑布置形式,坐落于厦大芙蓉湖畔。其中的主楼布置在中间,地上二十一层,为各系及学校办公场所;地下二层,为平战结合的汽车库。建筑面积25000m2,空调面积约18000m2,建筑高度83米。地上部分设中央空调。工程于2001年竣工完成。二主要设计参数:冷冻水:7/12 冷却水:32/37室内设计参数:室内参数场所温度()相对湿度()新风量(m3/ph)办公室2427406030会议室252765展览室26284560计算机房24274060走廊、门厅252765空调总耗冷量:3000kw;三空调设备:冷源:采用两台螺杆水冷冷水主机,单台制冷量1343kw。机组布置在大台阶底下的制冷机房。冷冻水循环泵为三台低噪声型(二用一备),流量220m3/h,扬程31m;冷却水循环泵为三台低噪声型(二用一备),流量346m3/h,扬程38m;选用两台无风机型冷却塔,循环流量350 m3/h;考虑噪声及飘水的影响,将塔放置在离楼群较远的位置。四系统形式:空调水系统原理图如下:1螺杆冷水机组 2冷冻水泵 3冷却水泵4无风机冷却塔 5分水器 6集水器 7-膨胀水箱 8-水处理仪 9-二通电磁阀10-三通电动阀 11-二通电动阀本工程空调水系统按二管制设计,一次泵系统,空调主机定流量运行,负荷侧变流量运行。各层同程式,系统异程式。冷冻水通过分、集水器分配至各末端用户。全楼分为一至十层、十一至二十一层两个水路。在一、二、三及十一、十二、十三层的新风机入口处各设一个三通电动调节阀。当实际冷负荷小于设计值时,部分冷冻水从三通阀旁通。各层均采用风机盘管加独立新风的布置方式。每层内走廊设一台吊顶式新风机,将室外新风处理至室内焓值后,送到各房间,在风机盘管混合箱内与回风混合。五工程的几点不足:本工程于2001年竣工,试运行一个季度后,情况基本良好。但是也暴露出来一些问题。其中有些是设计考虑不周,有些则是施工不当所致。1. 设计时要求管径小于dn100的水管采用丝扣连接,但在实际施工时采用的是麻丝,而且在安装过程中未严格执行冲洗程序。在验收时未发现大问题,但运行几个月后,出现各层楼均有个别房间温度达不到设计要求,多数为各层的水路末端。经检查,发现这些房间的风机盘管被麻丝、焊渣严重堵塞。虽经几次冲洗,但不能解决根本问题。因此,在一些比较重要的建筑中,可以考虑在风机盘管的进水端设过滤器。2. 在使用中,部分房间的布局有变动。一些较大空间中另隔出小房间,与大房间共用一台风机盘管,只在房间门上留有对流百叶。实际使用中,这些小房间的温度都偏高。在整改时,小房间也加设风机盘管。3. 每层设一台吊顶新风机供给该楼层所需的新风,是考虑节省机房面积。实际使用时,临近新风机的房间普遍抱怨有噪声。经检查,发现在装修时走廊隔断未顶到板底,与相邻房间在吊顶空间内相通。将缝隙堵死,并将新风机外包消声材料后,噪声降低。4. 本工程设置了两台主机,单台制冷量1343kw。在夏季运行期间,多数时间开一台即可;两台同时开机,每台出力约55。一方面,目前建筑内三层展览厅及二十一层观光层都未开放,所需冷量变小;另一方面,主机单机容量选择偏大。5. 施工时风机盘管回风口与混合箱之间大部分未设风管连接,致使回风是从吊顶抽风,卫生得不到保证;小部分采用帆布软接,而且未设固定措施,回风时由于负压作用导致帆布口部缩小,回风速度变大,有噪声感。在整改时全部采用短管连接。几种bchp技术及其能源利用效率的简要分析摘要: bchp是能量梯级综合利用的技术,对于解决我国面临的环境、能源问题有重要作用。本文对bchp与传统空调用能方式的优缺点进行了分析,讨论了现有技术条件下几种bchp技术的性能和特点,对基于微型燃气轮机和燃气内燃机的bchp技术进行了分析,结果表明,在目前的技术水平下,当”以热定电”时,燃气内燃机方案较微燃机方案的一次能耗要低。 关键词: bchp 微型燃气轮机 燃气内燃机 以热定电1 引言能源、环境问题是中国实现可持续发展战略所面临的重大挑战之一,应对这一挑战,需要各行各业密切协作,在各自的领域里作出巨大努力,空调制冷业也不能例外。事实上近年来空调制冷业的发展,正在造成我国乃至全球能源、环境危机:空调用电不仅已成为城市能源消费最多的领域之一,还在夏季造成电网尖峰负荷,致使电力供应出现紧张局势;而空调在全球的使用也直接、间接地造成诸如大气臭氧层破坏,温室气体排放,城市热岛1等环境问题。因此,解决能源、环境问题,空调制冷行业有着不可推卸的责任,理应有所作为和贡献。提高设备性能虽然是解决问题的一个重要方面,但在空调使用飞速增长的中国,仅仅这样还远不够,必须从提高整个能源系统效率的角度出发,研究提高空调系统用能的高效化、清洁化,有效降低空调制冷能耗,减少环境污染,这是一个不可忽视的领域1,2,而bchp作为一种能量梯级综合利用的技术,可以在这方面发挥重要作用1,2,3,本文就几种bchp技术的能效作一初步分析。2 bchp的概念及其优越性bchp即楼宇冷热电联产,是building cooling, heating and power的缩写,其原理是:燃料(油、气等)先经热功或电化学过程转换为电力供建筑物使用,燃料发电后的余热则用于建筑物供热、空调等,如图1所示。而在传统的以电力为能源的空调系统中,高品质的能源在中国目前最主要的部份是煤首先以较低的效率被转换为“清洁的”二次能源电力,经输配电设施到建筑物,再经制冷制热设备转换为低品位的空调冷热源通常是冷水或热水,在此过程中能量不仅在质上贬值了高品位的能量被转换成了低品位的空调冷热水,且数量上也“减少了”:大部份排热因远离用户而作为废热与nox、so2、粉尘等污染物一起被排入大气,造成环境污染,如图2所示。比较上面两种空调用能模式可见,bchp的用能方式具有诸多优点:用能合理,实现了能量的梯级利用,减少了能量转化和利用过程中的不可逆损失;高效,燃料作功后的余热也得到充份利用;清洁,可使用天然气等清洁燃料;环保,燃气内燃机、燃气轮机、燃料电池均有低排放特点;分布式现场发电,提高供电可靠性。在当今中国,空调用电持续增加,而污染严重的矿物燃料煤又占能源消耗绝对多数比例,为缓解环境、能源问题,国家已启动了一系列天然气工程,预计未来天然气在能源消费中所占比例将有较大幅度提高。但我国是一个人均能源、资源稀少的国家,已探明天然气储量并不能满足国内能源需求,因此,应当尽可能高效、经济地使用,如bchp,cchp,dhc等等,使之在解决人口密集的城市的能源、环境问题方面有效发挥作用。3 几种bchp技术3.1 bchp的系统构成根据其功能,bchp系统可分为三个子系统:燃料电力转换及接入设备、空调冷热源热备、包括空气处理末端的空调系统。各子系统均有多种技术方案,各有特点。3.2 几种 bchp技术方案的性能特点3.2.1 微型燃气轮机余热溴化锂机组方案此方案中,微型燃气轮机(出力300kw以下)发电后的余热被直接用以驱动吸收式制冷机,制冷量不足时可补燃以增加冷机出力。目前小型燃机发电效率在30以下,国外有数家公司有商品化机组,国内也已开始投入力量进行研发。吸收式机组国内外均有生产厂家。此方案系统较简单,且不用氟利昂制冷剂,与建筑用能匹配也较容易。3.2.2 燃气内燃机余热投入型溴化锂机组方案在此方案中内燃机发电后的余热先进行回收,然后被导入直燃机用以预热溶液,减少燃料消耗量。燃气内燃机特别是带增压中冷的机组发电效率较高,目前在30-42间,依机组容量而异。冷(热)负荷较低时,也可仅以排热驱动制冷机。3.2.3 高温燃料电池余热溴化锂机组方案燃料电池是将燃料化学能直接转化为电能的装置,不受卡诺定律的限制,有很高的发电效率(50-79)。sofc(固体氧化物燃料电池)和mcfc(熔融碳酸盐燃料电池)可直接以天然气作燃料发电4,不仅发电效率高,且排热温度高,可达750,用以驱动吸收式制冷机,可获得较高的能效比。此方案因发电效率高,排热相应较少,也需要补燃才可提供足够冷量。3.2.4 燃气内燃发电机压缩式制冷这是一个无吸收式制冷技术的方案。燃气机除用以发电外,还可用以直接驱动蒸汽压缩式制冷机或热泵,也可以发电后驱动电动制冷机组,依建筑物需要而定。燃气机的余热可作各种用途,包括用于除湿干燥,这可以提高制冷机出水温度,使制冷机组能效比大幅提高;在热泵应用中则可以提高制热量,使之在外界环境温度下降时仍能维持一定的制热量。因燃气机热效率较高,这个方案的一次能利用效率也是较高的。除以上方案外,还可能有其它方案的组合,而其它技术如pafc(磷酸型燃料电池)、pemfc(质子交换膜燃料电池)也是合适的bchp动力设备,在此不一一述及。下表列出了国内外知名厂家如康明斯,卡特彼勒,宝曼等的发电机组所能达到的性能。由表可见,不同产品发电效率、余热品位(温度)相差较大,要分析与其相应的bchp的能效,只有火用效率才是合理的指标1,但这在计算上有些不便,为使分析可行,本文将在一定的热(冷)、电负荷下进行不同方案的一次能消耗的分析比较。表1.几种动力转换设备的性能参数 项目参数内燃机外燃机微燃机*sofc发电效率32-383015202550-60高温余热温度()520/550/700制冷系数*1.0/1.0/1.25低温余热温度()9050/9595/制冷系数*0.75/0.80.8/*理论估计值,根据直燃机高发温度160度、cop较高值为1.35推算得到。*某公司热水型溴冷机数据。*见bowman 公司产品介绍。4 两种bchp技术的能效分析鉴于微型燃气轮机和燃气内燃机在目前是较成熟的技术,因此本文着重讨论基于这两种技术的bchp技术:方案1 和方案4。设有一建筑物,其冷负荷为qc,自发电负荷为w。则依方案1的能量转换方式可得:上式中,吸收式制冷机的性能系数;t燃气轮机发电效率;吸收式制冷机补燃功率。设补燃功率制冷量为总冷负荷的x倍,即,则设燃气内燃机发电效率为e,压缩式制冷机性能系数为,不考虑内燃机余热回收,则方案1的一次能消耗量及方案4的一次能消耗量分别为由于关于补燃的溴冷机的性能参数比较少,为便于讨论,现假设x=0,即不考虑补燃,建筑物冷负荷全部由燃气轮机余热满足,这实际上是”以热定电”。以目前蒸汽压缩冷水机组的技术水平,高水平的螺杆机copc可达5.2,离心机则可达7.0,这里取5.2。燃气内燃发电机效率取35%,代入表1的其它相关参数可得各方案的pe值,如表2所示,这里还未计入内燃机的可利用排热。由表2可见,在不补燃、不计入内燃机可利用排热的条件下,仅当微燃机效率大于25时,方案2.2.4的一次能耗才较方案2.2.1 为低,但由于此时余热温度较低,制冷性能系数低,为满足冷负荷要求,发电功率就将超出建筑自身负荷,需要向电网售电,而这将遇到很大阻力;此外若将内燃机的排热用于空调制冷,如干燥除湿等,则方案2.2.4的一次能耗仍将低于方案2.2.1,将另文进行分析讨论。表2. 两种方案的一次能耗比较 方案pe值方案2.2.16.67w5w

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论