水利工程论文-有限元强度折减系数法计算土坡稳定安全系数的精度研究.doc_第1页
水利工程论文-有限元强度折减系数法计算土坡稳定安全系数的精度研究.doc_第2页
水利工程论文-有限元强度折减系数法计算土坡稳定安全系数的精度研究.doc_第3页
水利工程论文-有限元强度折减系数法计算土坡稳定安全系数的精度研究.doc_第4页
水利工程论文-有限元强度折减系数法计算土坡稳定安全系数的精度研究.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

水利工程论文-有限元强度折减系数法计算土坡稳定安全系数的精度研究摘要:有限元强度折减系数法在边坡稳定分析中的应用正逐渐受到人们的重视。本文较为全面地分析了土体屈服准则的种类、有限元法自身计算精度以及H(坡高)、(坡角)、C(粘聚力)、(摩擦角)对折减系数法计算精度的影响,并给出了提高计算精度的具体措施。通过对106个算例的比较分析,表明折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且离散度极小,这不仅验证了文中所提措施的有效性,也说明了将折减系数法用于分析土质边坡稳定问题是可行的。关键词:强度折减系数边坡稳定屈服准则误差分析自弗伦纽期于1927年提出圆弧滑动法以来,至今已出现数十种土坡稳定分析方法,有极限平衡法、极限分析法、有限元法等。不少研究表明,各种方法所得稳定安全系数都比较接近,可以说,这些方法已经达到了相当高的精度。近年来,由于计算机技术的长足发展,基于有限元的折减系数法在边坡稳定分析中的应用备受重视。与极限平衡法相比,它不需要任何假设,便能够自动地求得任意形状的临界滑移面以及对应的最小安全系数,同时它还可以真实的反映坡体失稳及塑性区的开展过程。到目前为止,已有很多学者对折减系数法进行了较为深入的研究1,2,3,并在一些算例中得到了与极限平衡法十分接近的结果。但总体说来,此法仍未在工程界得到确认和推广,究其原因在于影响该法计算精度的因素很多,除了有限元法引入的误差外,还依赖于所选用的屈服准则。此论文的目的有两点:(1)力图全面分析屈服条件和有限元法本身对折减系数法计算精度的影响,并提出应选用何种屈服准则以及提高有限元法计算精度的具体措施;(2)结合工程实例,分析对边坡稳定安全系数影响最大的4个主要参数(H坡高、坡角、C粘聚力、摩擦角)对折减系数法计算精度的影响。从以往的计算结果来看,严格法(Spencer)所得稳定安全系数比简化Bishop法平均高出约2%3%,而通过106个算例的比较分析,表明:折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且误差离散度极小,可以认为是正确的解答4。这有力地说明了将有限元折减系数法用于分析土坡稳定问题是可行的,但必须合理地选用屈服条件以及严格地控制有限元法的计算精度,同时也表明:有限元折减系数法所得安全系数稍微偏高,其原因有待进一步研究。1折减系数法的基本原理Bishop等将土坡稳定安全系数F定义为沿整个滑移面的抗剪强度与实际抗剪强度之比,工程中广为采用的各种极限平衡条分法便是以此来定义坡体稳定安全系数。有限元强度折减系数法的基本思想与此一致,两者均可称之为强度储备安全度。因后者无法直接用公式计算安全系数,而需根据某种破坏判据来判定系统是否进入极限平衡状态,这样不可避免地会带来一定的人为误差。尽管如此,仍发展了一些切实可行的平衡判据,如:限定求解迭代次数,当超过限值仍未收敛则认为破坏发生;或限定节点不平衡力与外荷载的比值大小;或利用可视化技术,当广义剪应变等值线自坡角与坡顶贯通则定义坡体破坏3。文中平衡判据取:当节点不平衡力与外荷载的比值大于10-3时便认为坡体破坏。有限元折减系数法的基本原理是将土体参数C、值同时除以一个折减系数Ftrial,得到一组新的C、值,然后作为新的材料参数带入有限元进行试算,当计算正好收敛时,也即Ftrial再稍大一些(数量级一般为10-3),计算便不收敛,对应的Ftrial被称为坡体的最小安全系数,此时土体达到临界状态,发生剪切破坏,具体计算步骤可参考文献2,文中如无特别说明,计算结果均指达到临界状态时的折减系数。(1)(2)2屈服准则的影响用折减系数法求解实际边坡稳定问题时,通常将土体假设成理想弹塑性体,其中本构模型常选用摩尔-库仑准则(M-C)、Drucker-Prager准则以及摩尔-库仑等面积圆5准则。摩尔-库仑准则可用不变量I1,J2,表述成如下形式:(3)Drucker-prager(4)式中:I1为应力张量第一不变量;J2为应力偏量第二不变量;是应力洛德角。图1各屈服准则在平面上的曲线M-C准则较为可靠,它的缺点在于三维应力空间中的屈服面存在尖顶和棱角的不连续点,导致数值计算不收敛,所以有时也采用抹圆了的M-C修正准则6,它是用光滑连续曲线来逼进摩尔-库仑准则,此法虽然方便了数值计算,但不可避免地会引入一定的误差;而D-P准则在偏平面上是一个圆,更适合数值计算。通常取M-C准则的外角点外接圆、内角点外接圆或其内切圆作为屈服准则,以利数值计算。各准则的参数换算关系见表1。由徐干成、郑颖人(1990)5实际上是将M-C准则转化成近似等效的D-P准则形式。该准则要求偏平面上的摩尔-库仑不等边六角形与D-P圆面积相等。计算表明它与摩尔-库仑准则十分接近。见图1,r1为外角外接圆半径;r2为内角外接圆半径;r3为内切圆半径;摩尔-库仑准则构成的六角形面积为(5)对半径为r的圆面积S=r2,令S=Smorl得(6)(7)式(7)与式(4)对应项相等,可得(8)表1各准则参数换算编号准则种类kDP1外角点外接D-P圆DP2内角点外接D-P圆DP3内切D-P圆DP4等面积D-P圆注:表中、k是与D-P有关的材料参数。表2不同屈服准则所得最小安全系数/0.110253545DP10.5251.0441.7692.2543.051DP20.5250.9301.3321.5301.887DP30.4540.8481.2791.4991.870DP40.4770.8961.3961.6892.182简化Bishop法0.4940.8461.3161.6232.073(DP1-Bishop)/Bishop0.0630.2340.3440.3550.472(DP2-Bishop)/Bishop0.0630.0990.012-0.080-0.090(DP3-Bishop)/Bishop-0.0810.002-0.028-0.099-0.098(DP4-Bishop)/Bishop-0.0340.0590.0610.0410.053注:H=20mm;=45;C=42kPa。算例分析表明(表2、图2):DP4准则与简化Bishop法所得稳定安全系数最为接近。对有效算例(0)的误差进行统计分析可知,当选用DP4准则时,误差的平均值为5.7%,且离散度很小(图3)。而DP1的平均误差为29.5%,同时采用DP2、DP3准则所得计算结果的离散度非常大,均不可用。因此在数值分析中可用DP4准则代替摩尔-库仑准则。图2折减系数曲线图3DP4准则的计算误差3不同流动法则的影响有限元计算中,采用关联还是非关联流动法则,取决于值(剪胀角):=,为关联流动法则;0,为非关联流动法则。总体说来,采用非关联流动法则所得破坏荷载比同一类型材料而采用关联流动法则所得破坏荷载小,如忽略剪胀角(=0),将会得到较为保守的结果。值得注意的是:当=0时,正好与郑颖人等提出的广义塑性力学理论相符7,这时对应的塑性势面与q轴垂直。表3不同流动法则的影响=10=17=25非关联0.8711.1051.363关联0.8871.1371.425相对误差0.0180.0290.045=45;C=40kPa;H=20m;DP4准则。表4网格疏密对计算结果的影响节点数57711112250DP40.6610.6180.593简化Dishop法0.5830.5830.583(DP4-Bishop)/Bishop0.1340.0600.017注:H=20m;=45;=45;c=10000Pa。笔者对采用不同流动法则的算例进行了初步分析,表3的计算结果表明:对同一边坡,不论采用关联流动法则还是非关联流动法则,计算结果相差不大。这是因为它们只与坡体的体积变形有关,而在边坡稳定分析中,坡体常常为无约束天然坡体,体积变形对坡体稳定影响并不明显。然而,从破坏时位移大小及塑性区的分布来看,还是会有一些差异,有时并不能简单的忽略这种差异8。文中所有的算例均取=0,即满足非关联流动法则,算例结果显示出较好的精度。4有限元法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论