大气污染控制工程课件02-2燃烧与大气污染.ppt_第1页
大气污染控制工程课件02-2燃烧与大气污染.ppt_第2页
大气污染控制工程课件02-2燃烧与大气污染.ppt_第3页
大气污染控制工程课件02-2燃烧与大气污染.ppt_第4页
大气污染控制工程课件02-2燃烧与大气污染.ppt_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,第2章燃烧与大气污染(2),教学内容 1燃料的性质 2燃料燃烧过程 3烟气体积及污染物排放计算 4燃烧过程中硫氧化物的形成 5燃烧过程中颗粒物的形成 6燃烧过程中其他污染物的形成,2,3 烟气体积及污染物排放量计算,一烟气体积计算 . 理论烟气体积 在理论空气量下,燃料完全燃烧所生成的烟气体积称为理论烟气体积。以Vfg0表示,烟气成分主要是CO2、SO2、N2和水蒸气。 干烟气:除水蒸气以外的成分称为干烟气; 湿烟气:包括水蒸气在内的烟气。 Vfg0=V干烟气+V水蒸气 V理论水蒸气=V燃料中氢燃烧后的水蒸气+V燃料中所含的水蒸气 +V由供给理论空气量带入的水蒸气,3,2.烟气体积和密度的校正 燃烧产生的烟气其T、P总高于标态(273K、1atm)故需换算成标态。 大多数烟气可视为理气,故可应用理气方程。 设观测状态下(Ts、Ps下):烟气的体积为Vs,密度为s。 标态下(Tn、Pn下): 烟气的体积为Vn,密度为n。 标态下体积为: 标态下密度为: 应指出,美国、日本和国际全球监测系统网的标准态是298K、1atm在作数据比较时应注意。,4,3.过剩空气较正 因为实际燃烧过程是有过剩空气的,所以燃烧过程中的实际烟气体积应为理论烟气体积与过剩空气量之和。 用奥氏烟气分析仪测定烟气中的CO2、O2和CO的含量,可以确定燃烧设备在运行中烟气成分和空气过剩系数。 空气过剩系数为 = a-过剩空气中O2的过剩数 设燃烧是完全燃烧,过剩空气中的氧只以O2形式存在,燃烧产物用下标P表示,,5,假设空气只有O2、N2,分别为21%、79%,则空气中总氧量为 理论需氧量: 0.266N2P-O2P 所以(燃烧完全时) 若燃烧不完全会产生CO,须校正。即从测得的过剩氧中减去CO氧化为CO2所需的O2 此时 各组分的量均为奥氏分析仪所测得的百分数。,若燃烧是完全的,过剩空气中的O仅能够以的O2形式存在,假定燃烧产物以下标p表示:,实际烟气体积 Vfg0 Vfg = Vfg0 + (-1)Va,6,二.污染物排放量计算,方法: 根据实测的污染物浓度和排烟量 根据燃烧设备的排污系数、燃料组成和燃烧状况预测烟气量和污染物浓度 排放因子(Emission Factor),7,二.污染物排放量计算,排放因子举例(烟煤、次烟煤SOx、NOx、CO),8,二.污染物排放量计算,排放因子举例(烟煤、次烟煤 PM),9,二.污染物排放量计算,排放因子举例(机动车),EF,10,二污染物排放量的计算,例2-4 对例2-3给定的重油,若燃料中硫转化为SOX(其中SO2占97%),试计算空气过剩系数a=1.20时烟气中SO2及SO3的浓度,以ppm表示,并计算此时烟气中CO2的含量,以体积百分比表示。,11,二污染物排放量的计算,解:由例1可知,理论空气量条件下烟气组成(mol)为: CO2:73.58 H2O:47.5+0.0278 SOX:0.5 NX: 理论烟气量: 73.58+0.5+(47.5+0.0278)+( )=489.45mol/kg重油 即 489.45=10.96m3/kg重油 空气过剩系数a=1.2时,实际烟气量为: 其中10.43为理论空气量,即1Kg重油完全燃烧所需理论空气量。,12,二污染物排放量的计算,烟气中SO2的体积为 烟气中SO3的体积为 所以,烟气中SO2、SO3的浓度分别为:,13,二污染物排放量的计算,当=1.2时,干烟气量为:,CO2体积为:,所以干烟气中CO2的含量(以体积计)为:,14,二污染物排放量的计算,例2-5:已知某电厂烟气温度为473K,压力为96.93Kpa,湿烟气量Q=10400m3/min,含水汽6.25%(体积),奥萨特仪分析结果是:CO2占10.7%,O2占8.2%,不含CO,污染物排放的质量流量为22.7Kg/min。 (1) 污染物排放的质量速率(以t/d表示) (2) 污染物在烟气中浓度 (3) 烟气中空气过剩系数 (4)校正至空气过剩系数=1.8时污染物在烟气中的浓度。,15,解:(1)污染物排放的质量流量为: (2)测定条件下的干空气量为: 测定状态下干烟气中污染物的浓度: 标态下的浓度:,16,(3)空气过剩系数: (4)校正至=1.8条件下的浓度:,17,4 燃烧过程中硫氧化物的形成,一、燃料中硫的氧化机理 1.燃料中硫的氧化 有机硫的分解温度较低 无机硫的分解速度较慢 含硫燃料燃烧的特征是火焰呈蓝色,由于反应: 在所有的情况下,它都作为一种重要的反应中间体,18,2.H2S的氧化,19,3.CS2和COS的氧化,20,4.元素S的氧化,21,5.有机硫化物的氧化,22,二. SO2和SO3之间的转化,反应方程式 SO2 + O + M SO3 + M (1) SO3 + O SO2 + O2 (2) SO3 + H SO2 + OH (3) SO3 + M SO2 + O + M (4) 在炽热反应区 ,O 浓度很高,反应(1)和(2)起支配作用,23,二. SO2和SO3之间的转化,SO3生成速率 当dSO3 /dt = 0 时,SO3浓度达到最大 在富燃料条件下,O浓度低得多,SO3的去除反应主要为反应(3), SO3的最大浓度:,24,二. SO2和SO3之间的转化,燃烧后烟气中的水蒸气可能与SO3结合生成H2SO4,转化率: 转化率与温度密切相关 H2SO4浓度越高,酸露点越高 烟气露点升高极易引起管道和空气净化设施的腐蚀,25,二. SO2和SO3之间的转化,SO3的转化率/%,26,5燃烧过程中颗粒物的形成,一、碳粒子的生成 核化过程:气相脱氢反应并产生凝聚相固体碳 核表面上发生非均质反应 较为缓慢的聚团和凝聚过程 燃料的分子结构是影响积炭的主导因素 积炭的生成与火焰的结构有关 提高氧气量可以防止积炭生成 压力越低则积炭的生成趋势越小,27,一. 碳粒子的生成,火焰的结构 预混火焰:气体燃料和空气在燃烧前充分混合( bursen burner, meeker burner) 扩散火焰:燃料和空气分别进入燃烧区,混合然后发生反应(实际中应用最多),不同的区域有不同的 (0) 值,28,一. 碳粒子的生成,火焰的结构(续) 层流火焰:Re2200,强烈的湍流作用,但分子扩散仍然起作用,29,一. 碳粒子的生成,乙炔火焰中生碳反应过程,30,一. 碳粒子的生成,石油焦和煤胞的生成 燃料油雾滴在被充分氧化之前,与炽热壁面接触,发生液相裂化和高温分解,出现结焦 多组分重残油的燃烧后期会生成煤胞,难以燃烧。 焦粒生成反应的顺序:烷烃 烯烃 带支链芳烃 凝聚环系 沥青 半园体沥青 沥青焦 焦炭,31,二. 燃煤烟尘的形成,烟尘:固体燃料燃烧产生的颗粒物,包括: 黑烟:未燃尽的碳粒 飞灰:不可燃矿物质微粒 煤粉燃烧过程 碳表面的燃烧产物为CO,它扩散离开表面并与O2反应,32,二. 燃煤烟尘的形成,煤粉燃烧过程 理论上碳与氧的摩尔比近1.0时最易形成黑烟 在预混火焰中,C/O大约为0.5时最易形成黑烟 易燃烧又少出现黑烟的燃料顺序为:无烟煤 焦炭 褐煤 低挥发分烟煤 高灰发分烟煤 碳粒子燃尽的时间与粒子的初始直径、表面温度、氧气浓度等有关,33,二. 燃煤烟尘的形成,燃烧碳层中成分和温度分布,34,二. 燃煤烟尘的形成,黑烟形成的化学过程,35,二. 燃煤烟尘的形成,高灰分燃料的扩散燃烧,36,二. 燃煤烟尘的形成,飞灰的形成过程,37,二. 燃煤烟尘的形成,影响燃煤烟气中飞灰排放特征的因素 煤质 燃烧方式 烟气流速 炉排和炉膛的热负荷 锅炉运行负荷 锅炉结构,38,二. 燃煤烟尘的形成,影响燃煤烟气中飞灰排放特征的因素煤质,39,二. 燃煤烟尘的形成,燃煤颗粒大小对飞灰含量的影响,40,二. 燃煤烟尘的形成,影响烟煤烟气中飞灰排放特征的因素燃烧方式,41,二. 燃煤烟尘的形成,几种燃烧方式的烟尘百分比,42,二. 燃煤烟尘的形成,几种燃烧方式的烟尘颗粒概况,43,二. 燃煤烟尘的形成,几种燃烧方式的烟尘颗粒概况,44,火电厂大气污染物排放标准,第时段的火电厂锅炉最高允许烟尘排放浓度,45,火电厂大气污染物排放标准,第时段火电厂各烟囱SO2最高允许排放浓度,第时段的火电厂锅炉氮氧化物最高允许排放浓度(mg/m3),46,二. 燃煤烟尘的形成,影响燃煤烟气中飞灰排放特征的因素运行负荷,47,6燃烧过程中其他污染物的形成,一.有机污染物的形成 形成历程 链烃分子氧化脱氢形成乙烯和乙炔 延长乙炔的链形成各种不饱和基 不饱和基进一步脱氢形成聚乙炔 不饱和基通过环化反应形成C6C2型芳香族化合物 C6C2基逐步合成为多环有机物,48,一.有机污染物的形成,比较活泼的碳氢化合物可能是产生光化学烟雾的直接原因 碳氢化合物的产生量与燃料组成密切相关 燃料中高分子碳氢化合物浓度与POM排放水平具有相关性 燃料与空气的充分混合可降低有机物的含量,但不利于NOx的控制 同时减少CH和NOx的排放需要仔细控制混合的型式、温度水平和整个系统的停留时间,49,二. CO的形成,CO是所有大气污染物中量最大、分布最广的一种 CO的全球排放量为200106t/a 燃料中的碳都先形成CO,然后进一步氧化 在火焰温度下有足够的氧并且停留时间足够长,可以降低CO含量。 CO的形成和破坏都由动力学控制,反应路线: RH R RCHO RCO CO,50,2. CO的形成,51,三. Hg的形成与排放,Hg对人的肾和神经系统有危害 煤碳燃烧是Hg的一大来源 煤中Hg的析出率与燃烧条件有关 燃烧温度900oC时,析出率90 还原性气氛的析出率低于氧化性气氛 Hg排放控制是燃煤污染控制的新课题之一,52,四. NOx的形成,NOx的形成机理 燃料型NOx:燃料中的固定氮生成的NOx 热力型NOx: 高温下N2与O2反应生成的NOx 瞬时NOx:低温火焰下由于含碳自由基的存在生成的NOx,53,四. NOx的形成,54,四. NOx的形成,55,五.二恶英的形成机理,二恶英(Dioxin)是一种无色无味的脂溶性物质,二恶英实际上是一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物,全称分别叫多氯二苯并-对-二恶英(简称PCDDs)和多氯二苯并呋喃(简称PCDFs),我国的环境标准中把它们统称为二恶英类。多氯二苯并-对-二恶英(PCDDs)由2个氧原子联结2个被氯原子取代的苯环;为多氯二苯并呋喃(PCDFs)由1个氧原子联结2个被氯原子取代的苯环。每个苯环上都可以取代14个氯原子,从而形成众多的异构体,其中PCDDs有75种异构体,PCDFs有135种异构体。,56,五.二恶英的形成机理,二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累。自然界的微生物和水解作用对二恶英的分子结构影响较小,因此,环境中的二恶英很难自然降解消除。它包括210种化合物。它的毒性十分大,是氰化物的130倍、砒霜的900倍,有“世纪之毒”之称。国际癌症研究中心已将其列为人类一级致癌物。环保专家称,“二恶英”,常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。,57,五.二恶英的形成机理,二恶英的发生源主要有两个,一是在制造包括农药在内的化学物质,尤其是氯系化学物质,象杀虫剂、除草剂、木材防腐剂、落叶剂(美军用于越战)、多氯联苯等产品的过程中派生; 二是来自对垃圾的焚烧。焚烧温度低于800,塑料之类的含氯垃圾不完全燃烧,极易生成二恶英。二恶英随烟雾扩散到大气中,通过呼吸进入人体的是极小部分,更多的则是通过食品被人体吸收。以鱼类为例,二恶英粒子随雨落到江湖河海。被水中的浮游生物吞食,浮游生物被小鱼吃掉,小鱼又被大鱼吃掉,二恶英在食物链全程中慢慢积淀浓缩,等聚在大鱼体内的浓度已是水中的3000多倍了,而处于食物链顶峰上的人类体内将会聚集更多的二恶英。可怕的是一旦摄入二恶英就很难排出体外,积累到一定程度,它就引起一系列严重疾病。 二恶英属于氯代环三芳烃类化合物,在人体中不能降解不能排出,对人体健康有很大威胁的环境污染物。它有强烈的致癌性,而且能造成畸形,对人体的免疫功能和生殖功能造成损伤。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论