过表达相关资料及路线.doc_第1页
过表达相关资料及路线.doc_第2页
过表达相关资料及路线.doc_第3页
过表达相关资料及路线.doc_第4页
过表达相关资料及路线.doc_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基因克隆的几种常用方法 2006年12月28日09:50 中国兽医学报基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的几种常用方法介绍如下。 1根据已知序列克隆基因 对已知序列的基因克隆是基因克隆方法中最为简便的一种。获取基因序列多从文献中查取,即将别人报道的基因序列直接作为自己克隆的依据。现在国际上公开发行的杂志一般都不登载整个基因序列,而要求作者在投稿之前将文章中所涉及的基因序列在基因库中注册,拟发表的文章中仅提供该基因在基因库中的注册号(accessionnumber),以便别人参考和查询。目前,世界上主要的基因库有:(1)EMBL,为设在欧洲分子生物学实验室的基因库,其网上地址为http:/www.ebi.ac.uk/ebi-home.html;(2)Genbank,为设在美国国家卫生研究院(NIH)的基因库,其网上地址为/web/search/index.html;(3)Swissport和TREMBL,Swissport是一蛋白质序列库,其所含序列的准确度比较高,而TREMBL只含有从EMBL库中翻译过来的序列。目前,以Genbank的应用最频繁。这些基因库是相互联系的,在Genbank注册的基因序列,也可能在Swissport注册。要克隆某个基因可首先通过Internet查询一下该基因或相关基因是否已经在基因库中注存。查询所有基因文库都是免费的,因而极易将所感兴趣的基因从库中拿出来,根据整个基因序列设计特异的引物,通过PCR从基因组中克隆该基因,也可以通过RT-PCR克隆cDNA。值得注意的是,由于物种和分离株之间的差异,为了保证PCR扩增的准确性,有必要采用两步扩增法,即nested PCR。 根据蛋白质序列也可以将编码该蛋白质的基因扩增出来。在基因文库中注册的蛋白质序列都可以找到相应的DNA或cDNA序列。如蛋白质序列是自己测定的,那么需要设计至少1对简并引物(degenerated primer),从cDNA文库中克隆该基因。以这种方法克隆的基因必须做序列测定才能鉴别所扩增产物的特异性。 另外,在基因克隆之后,如还要进一步做表达研究,所使用的PCR酶最好不用Taq DNA聚合酶,而采用其他有自我检测(reading proof)功能的酶,如pfu。这样可以避免由于扩增过程中出现的点突变或终止密码子而导致整个研究结论的错误。 2根据已知探针克隆基因 这也是基因克隆的一种较直接的方法。首先将探针作放射性或非放射性标记,再将其与用不同内切酶处理的基因组DNA杂交,最后将所识别的片段从胶中切下来,克隆到特定的载体(质粒、噬菌体或病毒)中作序列测定或功能分析。这种方法不但可以将基因克隆出来,还能同时观察该基因在基因组中的拷贝数。但在探针杂交后,要注意高强度(highstringent)漂洗,以避免干扰信号,即保证克隆的特异性,同时节省时间。 3未知序列的基因打靶 根据已知序列进行基因克隆,多数是重复别人的工作,或者是在别人工作的基础上继续自己的工作,因而不存在新基因的克隆过程。对未知序列的基因克隆才是真正的创造性研究。 31随机引物法克隆未知序列基因随机引物PCR(arbitrarilyprimedPCR,AP-PCR)首先被用于基因组DNA或RNA的指纹图谱(fingerprint)分析,后来也有人将这种方法用于克隆与表型相关的基因或mRNA。该方法的理论依据是:表型受基因支配,在一个生物体发生了表型变化后,其基因组DNA很可能发生变化或出现不同基因的激活或关闭等;另一方面,如在寄生虫的发育过程中,不同发育阶段的虫体所表达的基因很可能不同,如将不同发育阶段的虫体mRNA提取出来,用单一引物(随机引物,其长度不超过16 nt)对不同时期的虫体mRNA进行扩增比较,即可找出导致表型变异的遗传学依据。这种方法是一种比较PCR,它要求至少有2种来自不同表型但又很类似的基因组DNA或mRNA。AP-PCR扩增后的产物必须99%是一致的,只有个别特异的产物出现在特异的表型个体中。该方法对表型或种源关系相差甚远的生物个体之间没有比较意义(见图1)。图1应用AP-PCR法进行2种或多种表型特征类似的个体间指纹图谱分析或表型相关基因克隆箭头所指扩增带为特异于个体()的扩增产物AP-PCR的操作一般采用两步法,即前10个循环多以较低的退火温度(annealingtemperature)进行扩增,后20个循环则采用较高的退火温度扩增。AP-PCR产物多较短,一般需高浓度的琼脂糖凝胶检测,也可用聚丙烯酰胺凝胶检测。如扩增的模板为mRNA,通过比较扩增产物的强度,可以得知该基因在2种生物或同一生物不同发育阶段的表达强度。另外,在AP-PCR检测到与某一表型相关的基因或基因产物(mRNA)以后,下一步工作就是克隆出整个基因或mRNA。主要操作程序为:(1)AP-PCR产物的提取、克隆及序列测定。首先将AP-PCR检测到的特定片段从凝胶中切下,提取DNA克隆到适宜的载体内(如TA载体),再测定其核苷酸组成。根据其核苷酸组成设计2个方向相反的引物(P-1,P-2,见图2)。引物长度多在20 nt以上;退火温度在60以上;(2)将基因组DNA做适当酶切,然后在其两端连接上相同的接头(见图2,这种接头可从生物制品公司购买)。根据接头的序列扩增。3.2DifferentialdisplayPCR(DD-PCR)DD-PCR是在AP-PCR基础上发明的一种RT-PCR方法,主要用于2种或多种类似生物个体在基因表达上的差异分析。其基本原理是:所有真核生物的成熟mRNA都含有不同长度的poly+(A)尾部序列,根据poly+(A)内部的2个核苷酸排列的不同,可以将所有的mRNA分子分为12类(见图3)。图真核生物12种mRNA的序列特点图DD-PCR示意图箭头所示为特异扩增产物根据这12种mRNA序列可合成12种相应的反转录引物,即MNTTTTTTTT,用其分别进行反转录,即可将所有mRNA分类合成12种cDNA(于12个试管内),然后再用随机引物,以这12种cDNA分别做模板进行PCR扩增(见图1和图4),那么与表型相关的mRNA就很容易被发现并克隆出来。但不论AP-PCR还是DD-PCR,都适用于2种种源近似生物或不同发育阶段的同一个体之间的比较。因而,其PCR的模板必须是来自2个生物或同一生物的不同发育阶段的mRNA。DD-PCR的优点是快速、方便,可以检测表达量极低的mRNA,但其技术条件要求较高,所扩增的mRNA的质量不能有差异,即mRNA不应降解。目前这一方法已广泛应用于生物表型相关基因的克隆及比较研究。3.3RepresentativedifferenceanalysisPCR (RDA-PCR)这是一种差减杂交 (subtractivehybridizatio-n)与PCR相结合的技术,其整个操作程序完全不同于AP-PCR和DD-PCR。前2种方法是将两模板DNA或cDNA分别进行PCR扩增,最后通过扩增产物的差异,分离和克隆特异扩增带,其缺点是需要将特异扩增产物从胶中切下来,提取DNA,再扩增后才能克隆。RDA-PCR只扩增区别于某一表型的特异基因,因而更便于扩增产物的克隆与分析(见图5)。其基本原理是:用一个在种源上相近的基因组将靶基因组中所有共同的基因掩盖起来,而只暴露出特异的基因,在整个反应中只有特异基因能被扩增。其操作程序为:(1)用同一限制性内切酶(一般用Bam HI,Bgl II或Hind III)同时处理靶基因组和掩盖基因组DNA,其中掩盖基因组DNA的量至少要2倍于靶基因组DNA的量;(2)在经酶切的靶基因组片段的两端加上连接头,其序列与酶切产生的粘性末端的序列相对应;(3)将2个基因组的DNA混合后,高温变性,低温退火。由于掩盖基因组DNA的量远大于靶基因组DNA量,那么与掩盖基因组DNA相同的靶基因就会与掩盖基因形成杂合体,而只有特异的靶基因才能重新组合,不会受掩盖基因的影响;(4)用Taq DNA聚合酶将粘性末端补齐后,加入与连接子相对应的引物,经过30个左右的PCR扩增,就可以将靶基因组中与掩盖基因不同的特异基因扩增出来。这种方法的起始操作程序较复杂,各反应步骤要求准确无误,但其检测的准确度较高。对于基因组内的点突变、重排、插入序列等变化均可检测出来。4用特异抗体克隆基因 用抗体克隆基因的关键是抗体的特异性。一般以单克隆抗体最为理想。获取特异抗体的方法主要有:(1)制备识别功能抗原的单克隆抗体;(2)将SDS-PAGE分离的蛋白质特异带切下免疫动物,其抗体只识别该特异蛋白质;(3)用Western-blot法将识别某一蛋白质带的抗体从膜上洗脱下来。在获取理想的抗体后,便可以用这些抗体筛选表达型基因组文库或cDNA文库,从文库中将编码某一特异蛋白质的基因克隆出来。 5特异基因的功能克隆 它是借助于基因产物即基因所编码的蛋白质的功能将该基因克隆出来的一种方法。基因的功能克隆主要有2种:一是phagedisplay,另一是peptidedisplay。后者的原理与前者基本相同。目前以phagedisplay的应用最为广泛,本文只对这一方法加以介绍。 任何一种病原体,包括细菌、病毒和寄生虫,在其对宿主侵入或致病过程中,病原体本身的蛋白质成分(ligand)需要首先与宿主细胞上的受体(receptor)相互识别连接。如口蹄疫病毒需要借助于受体细胞上的Heparansulfate受体,并与其相互作用后才能侵入细胞内;巴贝斯虫裂殖子需借助于宿主的补体作为桥梁,才能与红细胞结合并最后侵入红细胞内。对病原体与宿主受体相互作用成分的特性与功能分析,是制订免疫预防措施及制备阻断药物的前提。phagedisplay法是克隆病原体ligand的一种最为理想的手段。图6phage display克隆基因示意图Phagedisplay的基本操作过程为:(1)提取某一病原体基因组DNA,用超声波将DNA切割成5001 500的片段;(2)将片段末端用T4DNA聚合酶处理后,与载体DNA(phagemid)连接形成噬菌体质粒。用这些质粒与辅助噬菌体(helperphage)同时转染大肠杆菌。phagemid在大肠杆菌内包装成噬菌体,大量繁殖,同时将插入的外源基因片段表达,表达产物主要集中在噬菌体颗粒的表面;(3)将特定的受体固定于载体上(多为ELISA板),方法同一般的ELISA包被。将噬菌体悬液作适当稀释后,加入平板孔内,感作一段时间,用PBS等缓冲液漂洗。最后,只有表达特异功能蛋白的噬菌体才能与包被在平板上的受体相互结合,那些表达非相关蛋白的噬菌体由于不能与受体连接而被洗脱;(4)用高强度NaCl液将结合在受体上的噬菌体分离下来,再感染大肠杆菌,便可将编码特异功能蛋白质的基因克隆。一个真核生物至少含有10万个不同的基因,其中只有10%15%的基因在不同的发育时期表达,且不同的基因表达的强度相差甚远。在致病生物中,致病力强的生物,其致病因子(往往是1种或几种功能蛋白或酶)的表达量往往多于致病力弱的生物。从基因组中将人们感兴趣的基因或其转录产物扩增并克隆出来,是进一步对所编码蛋白质作功能分析的关键。本文介绍的几种基因克隆的方法是近几年应用比较广泛的方法。在具体实验中选择哪一种方法,还要根据研究者所要克隆的基因及其所在的基因组和对该基因的研究背景来决定。因克隆(gene clone)的几种常用方法介绍来源:易生物实验 浏览次数:1309 网友评论 0 条 1根据已知序列克隆基因2根据已知探针克隆基因3未知序列的基因打靶4用特异抗体克隆基因5特异基因的功能克隆关键词:基因基因克隆geneclone特异基因基因打靶特异抗体探针基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的几种常用方法介绍如下。 1根据已知序列克隆基因 对已知序列的基因克隆是基因克隆方法中最为简便的一种。获取基因序列多从文献中查取,即将别人报道的基因序列直接作为自己克隆的依据。现在国际上公开发行的杂志一般都不登载整个基因序列,而要求作者在投稿之前将文章中所涉及的基因序列在基因库中注册,拟发表的文章中仅提供该基因在基因库中的注册号(accessionnumber),以便别人参考和查询。目前,世界上主要的基因库有:(1)EMBL,为设在欧洲分子生物学实验室的基因库,其网上地址为http:/www.ebi.ac.uk/ebi-home.html;(2)Genbank,为设在美国国家卫生研究院(NIH)的基因库,其网上地址为/web/search /index.html;(3)Swissport和TREMBL,Swissport是一蛋白质序列库,其所含序列的准确度比较高,而TREMBL只含有从EMBL库中翻译过来的序列。目前,以Genbank的应用最频繁。这些基因库是相互联系的,在Genbank注册的基因序列,也可能在 Swissport注册。要克隆某个基因可首先通过Internet查询一下该基因或相关基因是否已经在基因库中注存。查询所有基因文库都是免费的,因而极易将所感兴趣的基因从库中拿出来,根据整个基因序列设计特异的引物,通过PCR从基因组中克隆该基因,也可以通过RT-PCR克隆cDNA。值得注意的是,由于物种和分离株之间的差异,为了保证PCR扩增的准确性,有必要采用两步扩增法,即nestedPCR。 根据蛋白质序列也可以将编码该蛋白质的基因扩增出来。在基因文库中注册的蛋白质序列都可以找到相应的DNA或cDNA序列。如蛋白质序列是自己测定的, 那么需要设计至少1对简并引物(degeneratedprimer),从cDNA文库中克隆该基因。以这种方法克隆的基因必须做序列测定才能鉴别所扩增产物的特异性。 另外,在基因克隆之后,如还要进一步做表达研究,所使用的PCR酶最好不用TaqDNA聚合酶,而采用其他有自我检测(readingproof)功能的酶,如pfu。这样可以避免由于扩增过程中出现的点突变或终止密码子而导致整个研究结论的错误。 2根据已知探针克隆基因 这也是基因克隆的一种较直接的方法。首先将探针作放射性或非放射性标记,再将其与用不同内切酶处理的基因组DNA杂交,最后将所识别的片段从胶中切下来,克隆到特定的载体(质粒、噬菌体或病毒)中作序列测定或功能分析。这种方法不但可以将基因克隆出来,还能同时观察该基因在基因组中的拷贝数。但在探针杂交后,要注意高强度(highstringent)漂洗,以避免干扰信号,即保证克隆的特异性,同时节省时间。 3未知序列的基因打靶 根据已知序列进行基因克隆,多数是重复别人的工作,或者是在别人工作的基础上继续自己的工作,因而不存在新基因的克隆过程。对未知序列的基因克隆才是真正的创造性研究。 31随机引物法克隆未知序列基因1随机引物PCR(arbitrarilyprimed PCR,AP-PCR)首先被用于基因组DNA或RNA的指纹图谱(fingerprint)分析,后来也有人将这种方法用于克隆与表型相关的基因或mRNA。该方法的理论依据是:表型受基因支配,在一个生物体发生了表型变化后,其基因组DNA很可能发生变化或出现不同基因的激活或关闭等;另一方面,如在寄生虫的发育过程中,不同发育阶段的虫体所表达的基因很可能不同,如将不同发育阶段的虫体mRNA提取出来,用单一引物(随机引物,其长度不超过16nt)对不同时期的虫体mRNA进行扩增比较,即可找出导致表型变异的遗传学依据。这种方法是一种比较PCR,它要求至少有2种来自不同表型但又很类似的基因组DNA或mRNA。AP-PCR扩增后的产物必须99%是一致的,只有个别特异的产物出现在特异的表型个体中。该方法对表型或种源关系相差甚远的生物个体之间没有比较意义(见图1)。图1应用AP-PCR法进行2种或多种表型特征类似的个体间指纹图谱分析或表型相关基因克隆箭头所指扩增带为特异于个体()的扩增产物AP-PCR的操作一般采用两步法,即前10个循环多以较低的退火温度(annealingtemperature)进行扩增,后20个循环则采用较高的退火温度扩增。AP-PCR产物多较短,一般需高浓度的琼脂糖凝胶检测,也可用聚丙烯酰胺凝胶检测。如扩增的模板为mRNA,通过比较扩增产物的强度,可以得知该基因在2种生物或同一生物不同发育阶段的表达强度。另外,在AP-PCR检测到与某一表型相关的基因或基因产物(mRNA)以后,下一步工作就是克隆出整个基因或mRNA。主要操作程序为:(1)AP-PCR产物的提取、克隆及序列测定。首先将AP-PCR检测到的特定片段从凝胶中切下, 提取DNA克隆到适宜的载体内(如TA载体),再测定其核苷酸组成。根据其核苷酸组成设计2个方向相反的引物(P-1,P-2,见图2)。引物长度多在20 nt以上;退火温度在60以上;(2)将基因组DNA做适当酶切,然后在其两端连接上相同的接头(见图2,这种接头可从生物制品公司购买)。根据接头的序列扩增。 图2含有AP-PCR产物的特定基因的扩增与克隆3.2DifferentialdisplayPCR(DD-PCR)DD-PCR是在AP-PCR基础上发明的一种RT-PCR方法,主要用于 2种或多种类似生物个体在基因表达上的差异分析。其基本原理是:所有真核生物的成熟mRNA都含有不同长度的poly+(A)尾部序列,根据poly+ (A)内部的2个核苷酸排列的不同,可以将所有的mRNA分子分为12类(见图3)。根据这12种mRNA序列可合成12种相应的反转录引物,即 MNTTTTTTTT,用其分别进行反转录,即可将所有mRNA分类合成12种cDNA(于12个试管内),然后再用随机引物,以这12种 cDNA分别做模板进行PCR扩增(见图1和图4),那么与表型相关的mRNA就很容易被发现并克隆出来。但不论AP-PCR还是DD-PCR,都适用于 2种种源近似生物或不同发育阶段的同一个体之间的比较。因而,其PCR的模板必须是来自2个生物或同一生物的不同发育阶段的mRNA。DD-PCR的优点是快速、方便,可以检测表达量极低的mRNA,但其技术条件要求较高,所扩增的mRNA的质量不能有差异,即mRNA不应降解。目前这一方法已广泛应用于生物表型相关基因的克隆及比较研究。 图 3真核生物12种mRNA的序列特点图 4DD-PCR示意图箭头所示为特异扩增产物3.3RepresentativedifferenceanalysisPCR (RDA-PCR)35这是一种差减杂交 (subtractivehybridizatio-n)与PCR相结合的技术,其整个操作程序完全不同于AP-PCR和DD-PCR。前2种方法是将两模板DNA或cDNA分别进行PCR扩增,最后通过扩增产物的差异,分离和克隆特异扩增带,其缺点是需要将特异扩增产物从胶中切下来,提取DNA,再扩增后才能克隆。RDA-PCR只扩增区别于某一表型的特异基因,因而更便于扩增产物的克隆与分析(见图5)。其基本原理是:用一个在种源上相近的基因组将靶基因组中所有共同的基因掩盖起来,而只暴露出特异的基因,在整个反应中只有特异基因能被扩增。其操作程序为:(1)用同一限制性内切酶(一般用Bam HI,Bgl II或Hind III)同时处理靶基因组和掩盖基因组DNA,其中掩盖基因组DNA的量至少要2倍于靶基因组DNA的量;(2)在经酶切的靶基因组片段的两端加上连接头,其序列与酶切产生的粘性末端的序列相对应;(3)将2个基因组的DNA混合后,高温变性,低温退火。由于掩盖基因组DNA的量远大于靶基因组DNA 量,那么与掩盖基因组DNA相同的靶基因就会与掩盖基因形成杂合体,而只有特异的靶基因才能重新组合,不会受掩盖基因的影响;(4)用Taq DNA聚合酶将粘性末端补齐后,加入与连接子相对应的引物,经过30个左右的PCR扩增,就可以将靶基因组中与掩盖基因不同的特异基因扩增出来。这种方法的起始操作程序较复杂,各反应步骤要求准确无误,但其检测的准确度较高。对于基因组内的点突变、重排、插入序列等变化均可检测出来。 图 5RDA-PCR示意图4用特异抗体克隆基因 用抗体克隆基因的关键是抗体的特异性。一般以单克隆抗体最为理想。获取特异抗体的方法主要有:(1)制备识别功能抗原的单克隆抗体;(2)将SDS-PAGE分离的蛋白质特异带切下免疫动物,其抗体只识别该特异蛋白质;(3)用Western-blot法将识别某一蛋白质带的抗体从膜上洗脱下来。在获取理想的抗体后,便可以用这些抗体筛选表达型基因组文库或cDNA文库,从文库中将编码某一特异蛋白质的基因克隆出来。 5特异基因的功能克隆 它是借助于基因产物即基因所编码的蛋白质的功能将该基因克隆出来的一种方法。基因的功能克隆主要有2种:一是phagedisplay6,7,另一是peptidedisplay。后者的原理与前者基本相同。目前以phage display的应用最为广泛,本文只对这一方法加以介绍。任何一种病原体,包括细菌、病毒和寄生虫,在其对宿主侵入或致病过程中,病原体本身的蛋白质成分 (ligand)需要首先与宿主细胞上的受体(receptor)相互识别连接。如口蹄疫病毒需要借助于受体细胞上的Heparansulfate受体,并与其相互作用后才能侵入细胞内;巴贝斯虫裂殖子需借助于宿主的补体作为桥梁,才能与红细胞结合并最后侵入红细胞内。对病原体与宿主受体相互作用成分的特性与功能分析,是制订免疫预防措施及制备阻断药物的前提。phagedisplay法是克隆病原体ligand的一种最为理想的手段。 图6phage display克隆基因示意图Phagedisplay的基本操作过程为:(1)提取某一病原体基因组DNA,用超声波将DNA切割成5001 500的片段;(2)将片段末端用T4DNA聚合酶处理后,与载体DNA(phagemid)连接形成噬菌体质粒。用这些质粒与辅助噬菌体(helper phage)同时转染大肠杆菌。phagemid在大肠杆菌内包装成噬菌体,大量繁殖,同时将插入的外源基因片段表达,表达产物主要集中在噬菌体颗粒的表面;(3)将特定的受体固定于载体上(多为ELISA板),方法同一般的ELISA包被。将噬菌体悬液作适当稀释后,加入平板孔内,感作一段时间,用 PBS等缓冲液漂洗。最后,只有表达特异功能蛋白的噬菌体才能与包被在平板上的受体相互结合,那些表达非相关蛋白的噬菌体由于不能与受体连接而被洗脱; (4)用高强度NaCl液将结合在受体上的噬菌体分离下来,再感染大肠杆菌,便可将编码特异功能蛋白质的基因克隆。一个真核生物至少含有10万个不同的基因,其中只有10%15%的基因在不同的发育时期表达,且不同的基因表达的强度相差甚远。在致病生物中,致病力强的生物,其致病因子(往往是1种或几种功能蛋白或酶)的表达量往往多于致病力弱的生物。从基因组中将人们感兴趣的基因或其转录产物扩增并克隆出来,是进一步对所编码蛋白质作功能分析的关键。本文介绍的几种基因克隆的方法是近几年应用比较广泛的方法。在具体实验中选择哪一种方法,还要根据研究者所要克隆的基因及其所在的基因组和对该基因的研究背景来决定。作者单位:解放军农牧大学动物医学系, 长春 130062第1作者: 陈启军, 男, 1963年生, 博士。现工作地址:Microbiology and Tumor Biology Center, Karolinska Institute and the Swedish Institute for Infectious Disease Control, Box 280, S-17177 Stockholm, Sweden参考文献1Perucho M, Welsh J, Peinado M A, et al. Fingerprinting of DNA and RNA by arbitrarily primed polymerase chain reaction: applications in cancer research. Methods Enzymol, 1995, 254: 2752902Liang P, Bauer D, Averboukh L, et al. Analysis of altered gene expression by differential display. Methods Enzymol, 1995, 254: 3043213Lisitsyn N, Lisitsyn Na, Wigler M. Cloning the differences between two complex genomes. Science, 1993, 259: 9469514Risinger J I,Terry L A, Boyd J. Use of representational difference analysis for the identification of mdm2 oncogene amplification in diethylstilbestrol-induced murine uterine adenocarcinomas. Mol Carcinogen, 1994, 11: 13185Lisitsyn N, Wigler M. Representational difference analysis in detection of genetic lesions in cancer. Methods Enzymol, 1995, 254: 2913046Jacobsson K, Frykberg L. Cloning of ligand-binding domains of bacterial receptors by phage display. BioTechniques, 1995, 5:8788857Jacobsson K, Frykberg L. Phage display shot-gun cloning of ligand-binding domains of prokaryotic receptors approaches 100% correct clones. BioTechniques, 1996, 20: 10701081Gateway技术提供以下可能: 通过去除冗长的亚克隆步骤节省您的时间同时将您的基因转移到多个表达系统在任何您选择的系统体外,细菌,酵母,昆虫,或哺乳动物分析表达一、一种更好的克隆方法Gateway技术能够克隆一个或多个基因进入到任何蛋白表达系统(图1)。这项强大的体外技术大大地简化了基因克隆和亚克隆的步骤,而同时典型的克隆效率高达95%或更高。当基因在目的表达载体之间快速简便的穿梭时,还可以保证正确的方向和阅读框。Gateway也有助于进行带不同数目纯化和检测标签蛋白的表达。图1 Gateway技术的灵活性目的基因克隆进入门载体后,可以同时转移目的基因到多个目的载体。Gateway利用了位点特异重组,所以在构建入门载体后,不再需要使用限制性内切酶和连接酶。一旦您拥有了一个入门克隆,就可以多次使用它,转移您的目的基因到Gateway改造过的各种表达载体(目的载体)。此外,由于在重组时DNA片段的阅读框和方向保持不变,因而您不必再为新的表达克隆测序担心。在使用每一种新的表达系统时,将会节省您更多的时间。二、一项强大而可靠的技术 Gateway技术是克隆和亚克隆DNA序列的一项新颖的通用系统,便于功能基因的分析和蛋白质的表达。一旦进入这个多功能的操作系统,DNA片段可以通过位点特异的重组在载体之间转移。Gateway技术是基于已研究的非常清楚的噬菌体位点特异重组系统(attB x attP attL x attR)。BP和LR两个反应就构成了Gateway技术(表1和图2)。BP反应是利用一个attB DNA片段或表达克隆和一个attP供体载体之间的重组反应,创建一个入门克隆。LR反应是一个attL入门克隆和一个attR目的载体之间的重组反应。 LR反应用来在平行的反应中转移目的序列到一个或更多个目的载体。表1 反应和术语总结反 应反应位点产 物产物结构BP反应attBattP入门克隆attL1-基因-attL2LR反应attLattR表达克隆attB1-基因-attB2图2 Gateway技术总结在BP反应中基因转移形成入门克隆,在LR反应中入门克隆可以作为反应物产生最终的表达克隆。完成构建Gateway表达克隆仅需两步(图2):(1)创建入门克隆,通过PCR或传统的克隆方法将目的基因克隆进入门载体。(2)混合包含目的基因的入门克隆和合适的目的载体以及Gateway LR Clonase酶,构建表达克隆。(表达克隆用来在合适的宿主中进行蛋白的表达和分析。)有几种方法可以构建Gateway入门克隆。无论您选择何种方法,创建的入门克隆都是准备用来与各种目的载体进行重组。(1)PCR克隆(定向TOPO克隆至入门载体或与供载体BP重组)(2)限制性内切酶消化和连接进入入门载体(3)使用pCMVSPORT6或pEXP-AD502*构建Gateway兼容cDNA文库(4)Gateway改造过的克隆资源* 这些克隆资源和cDNA文库两边加有attB位点。这些克隆可以通过与供载体及BP Gateway酶反应转换到入门载体。获得已有克隆资源的更多信息。三、PCR定向(PCR-Directional)TOPO克隆 定向TOPO克隆使得克隆PCR产物和其它的DNA分子更加快速和有效。进行5分钟的简单连接,产生90%的重组子。您不仅会比用连接酶介导的方法更快的获得克隆,而且可以节省因第一次无结果而重复试验所额外浪费的时间。定向TOPO克隆提供高效的一步法克隆策略,可以定向克隆平端PCR产物到入门载体。平端PCR产物定向克隆的效率90%,从而简化了筛选。同时不再需要连接酶、PCR后续步骤或者限制性内切酶。目前有两种定向TOPO克隆载体。pENTR/D-TOPO 和pENTR/SD/ D-TOPO(表2和图3)有以下特点:位于PCR产物插入位点两侧的attL重组位点可以与Gateway目的载体进行有效重组通用M13位点便于测序基于pUC的ori位点提供高产量质粒大肠杆菌中卡那霉素(kanamycin)抗性基因筛选表2 两种pENTR/D-TOPO载体的简单比较入门载体特 点优 点pENTR/D-TOPO无SD (Shine-Dalgarno)位点真核细胞中天然、N-或C-端融合;大肠杆菌中N-端融合;如果基因包含有SD序列,可在大肠杆菌中进行C-端或天然蛋白表达pENTR/SD/ D-TOPO含SD (Shine-Dalgarno)位点包含基因10和一个SD序列,可以有效的启动天然蛋白和融合蛋白在大肠杆菌中的表达图3 Gateway定向TOPO克隆DNA实验技术交流论坛:/四、构建入门载体的各种选择1、限制性内切酶消化作为PCR克隆的替代方法,有5种Gateway入门载体可以使用传统的限制酶切和连接的方法产生入门克隆。这些载体配合合适的目的载体,可以用于表达天然蛋白或带有N端或C端融合标签的重组蛋白。为了在真核细胞中有效地翻译蛋白,所有的5个 Gateway入门载体提供了Kozak 序列。此外,pENTR11提供了SD (Shine-Dalgarno)序列,便于在大肠杆菌中有效的翻译。2、PCR重组克隆重组是从PCR产物创建Gateway入门克隆的另一种方法。这种方法是通过合并attB位点到上游和下游引物上,然后共同孵育PCR扩增产物和pDONR载体(包含attP位点)以及Gateway BP Clonase酶混合物。接着转化进大肠杆菌中,您将会获得包含目的基因的入门克隆,同时目的基因两侧具有attL重组位点。这个入门克隆可以与任何 Gateway目的载体进行重组(参看图2)。3、Gateway改造过的cDNA文库如果您已经有了用Gateway兼容载体构建的cDNA文库,您就可以通过pDONR载体和 BP Clonase酶混合物进行一个简单的重组反应,很容易地把单个克隆转换成Gateway入门克隆。这样就不再需要亚克隆和测序,为您节约数小时的时间。SuperScript cDNA文库使用pCMVSPORT构建,有几种人组织来源可供选择,这些文库有很大一部分是全长的插入片段,可以完全代表来源mRNA。4、入门克隆的切入点克隆资源您可以从与10000个人类基因相关的35000个克隆中进行选择,这些克隆的70%以上是全长序列的。这些克隆来源于使用特殊的高级cDNA文库构建技术、oligo dT引物以及SuperScript II 反转录酶所构建的文库。许多克隆来源于I.M.A.G.E.协会,NCI CGAP 项目,ResGen库或UltimateORF库。克隆资源因为已克隆到Gateway改造过的载体,所以可以快速地将基因转到各种表达系统中。图4 进入Gateway系统的各种路线* 目前的克隆资源带有attB位点,需要与pDONR质粒重组五、触手可及的最高级表达系统 一旦您构建好Gateway入门克隆,蛋白表达和分析的大门就会向您敞开。使用 Gateway技术,您可以进入到几乎是无数种的表达系统。因为没有一个单一的表达系统蛋白适合于每一种蛋白,优化基因表达的最好方法是在多个系统中分析您的蛋白(图5)。图5 在Gateway系统表达全长开放阅读框大肠杆菌GUS基因、人类MAP4和Eif-4E基因平行转移进目的载体,在Sf9昆虫细胞(杆状病毒)或大肠杆菌BL21-SI菌株表达天然蛋白、N-端His或N-端GST融合蛋白。在所有的系统中均观察到GUS良好的表达,而MAP4只在昆虫细胞中表达,Eif-4E只在大肠杆菌中表达。在Hartley, J.L.et al. (2000) Genome Research 10(11):1788-95 可以找到更多的细节。为了扩展表达的选择,Invitrogen 已将Gateway技术合并到部分最高级的表达系统中。无论您选择哪个系统体外,细菌,酵母,昆虫,或哺乳动物都可以获得Gateway目的载体。此外,你可以很容易地把您自己最称手的表达载体转换成Gateway目的载体。基因克隆的常用方法介绍日期:2007-02-13来源: 字体:大 中 小 基因克隆的常用方法介绍生理科学进展 2000年第1期第31卷 综述作者:孙春晓于常海单位:孙春晓(中国科学院上海生命科学研究中心,上海200031);于常海(中国科学院上海生命科学研究中心,上海200031);于常海(香港科技大学生物系) 关键词:基因;克隆;差异显示摘要为能快速、准确地克隆出有意义的基因,本文介绍了目前常用的一些基因克隆方法,如差异显示PCR、抑制性差减杂交、RAP-PCR、代表性差异显示、酵母双杂交系统、cDNA直接捕捉法等;并对这些方法作了简要的评价,以利于大家选择适合自己的方法。学科分类号Q785A Brief Introduction to the Methods for Novel Gene CloningSUN Chun-Xiao,Albert C.H.Yu(Laboratory of Neuronal Injury and Regeneration,Shanghai Research Center of Life Sciences,Chinese Academy of Sciences,Shanghai 200031)Albert C.H.Yu(Department of Biology,Hong Kong University of Sciences and Technology,Hong Kong)AbstractThere are a lot of methods for novel gene cloning,but how to clone candidate gene(s) quickly and correctly? This is a brief introduction to methods of novel gene cloning,these methods includes: differential display reverse transcriptase polymerase chain reaction(DD RT-PCR),suppression subtractive hybridization(SSH),RNA arbitrarily primed PCR(RAP-PCR),representational difference analysis(RDA),yeast two-hybrid system,cDNA capturation,et al.We not only introduced these methods,but also discussed the advantages and disadvantages of them.However,no single method is omnipotent,one should pick up the method most suitable for a special purpose.Key wordsGene; Cloning; Differential display人类23对染色体大约含有3109 bp DNA,其中只有3%5 的基因能表达出有生理意义的蛋白质;这些基因异常扩增、重排、缺失或突变等变化与人类众多疾病的发生发展有着密切关系。如何快速、准确地克隆出这些基因是人类基因组第二个五年计划的首要目标。目前基因克隆的方法多种多样,本文就比较常用的几种方法分别作一简单介绍,这些方法各有利弊,各人应根据自己的需要选择不同的方法,以取得理想的结果。一、 差异表达基因(片段)的获得生物体之所以能表现出各种各样的特性,展示出丰富多彩的表型,主要是由于其内部基因表达的差异所致,因此认识生物体内部基因有序地、时相性地表达是揭示遗传信息复杂性的一个极为重要的步骤。基因表达的差异表现为二个方面:一是基因表达种类的不同;二是基因表达水平的改变。如何检测这些差异表达的基因呢?为此,科学家们设计了以下几种主要方法:(一)差减杂交(subtractive hybridization,SH)与抑制性差减杂交 ( suppression subtractive hybridization,SSH) 差减杂交或消减杂交最早由Lamar 和Palmer于1984年提出1,他们先用超声波打断雌性小鼠的DNA,用Mbo I完全消化雄性小鼠DNA;将两者一起变性、复性 (其中被打断的雌性小鼠DNA过量100倍),再将产物克隆入表达载体的BamH I位点中,只有那些两端均有GATC序列(即被Mbo I切割并自身复性的基因,也即雄鼠特有的基因)才能被克隆入载体,这样就达到了驱逐两者共有序列的目的,并最后得到了雄鼠Y染色体的DNA。该方法的缺点是技术要求高、耗时、工作量大,并且有时往往不大可行或不可靠。然而经过多年的改进,它已发展成为众多基因克隆方法的基础,许多其它方法均是从该方法衍生发展而来。抑制性差减杂交(SSH)2就是其中的一种。SSH是先将tester(样本) mRNA 和driver(参照) mRNA分别逆转录成cDNA,用4 碱基识别酶 (Rsa I)酶切两种cDNA产生平端片段;tester cDNA分别接上adapter(接头)1和adapter 2,并与过量的经Rsa I消化的driver样本杂交。设计引物于adapter处,使具有差异表达的片段才能成为PCR扩增的模板,重复杂交以减少非特异性扩增片段,利用adapter上的酶切位点进行克隆、测序等。由于每一mRNA逆转录成的cDNA经Rsa I酶切可产生一个以上的cDNA片段,故SSH的检测率较高、二轮杂交和二轮PCR可大量扩增特异表达片段。但由于二次杂交中driver-cDNA均为过量,tester-cDNA中某些表达丰度有差异的cDNA可能被掩盖,本方法所需的mRNA量较大(达数微克),稀有样本检测较困难;并且酶切后的cDNA与adapter的连接效率是实验中的关键,连接效率不高就难以发现有表达差异的基因。(二)差异显示PCR (differential display reverse-transcriptase PCR,DD RT-PCR)本方法由Liang等于1992年报道3,目前该方法在实验室被广泛使用。其主要原理是:利用大多数真核细胞基因mRNAs结尾处有多聚腺苷酸poly(A)结构,在其3端设计象5-T11CA样引物,该引物可与mRNAs总数的十二分之一(即poly(A)前面二个碱基为TG 的mRNA)结合,从而使这部分基因得到逆转录;而一套(即T11MN,M、N代表4 种碱基中的一种,但M不为T,共有12条) 引物可使全部mRNA得到扩增。由于PCR能扩增的长度 是23kb,而mRNA的平均长度只有1.2 kb;故在其5端再设计一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论