天津2020版高考数学复习6.4数列的综合应用精练.docx_第1页
天津2020版高考数学复习6.4数列的综合应用精练.docx_第2页
天津2020版高考数学复习6.4数列的综合应用精练.docx_第3页
天津2020版高考数学复习6.4数列的综合应用精练.docx_第4页
天津2020版高考数学复习6.4数列的综合应用精练.docx_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.4数列的综合应用挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.数列求和掌握非等差、等比数列求和的几种常见方法2017天津,182015天津,182015天津文,18错位相减法求数列的和等比数列及前n项和2016天津文,18分组转化法求数列的和2.数列的综合应用1.能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题2.能处理数列与函数,数列与不等式等综合问题2018天津,18裂项相消法求数列的和等差、等比数列的通项公式2014天津,19等比数列求和不等式证明2013天津文,18等差数列、等比数列与函数数列的基本性质分析解读综合运用数列,特别是等差数列、等比数列的有关知识,解答数列综合问题和实际问题,培养学生的理解能力、数学建模能力和运算能力.数列的应用主要从以下几个方面考查:1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.破考点【考点集训】考点一数列求和1.已知数列an,bn,其中an是首项为3,公差为整数的等差数列,且a3a1+3,a42an(n1,nN*),给出下列命题:若数列an满足a2a1,则anan-1(n1,nN*)成立;存在常数c,使得anc(nN*)成立;若p+qm+n(其中p,q,m,nN*),则ap+aqam+an;存在常数d,使得ana1+(n-1)d(nN*)都成立.上述命题正确的是.(写出所有正确命题的序号)答案5.已知数列an的前n项和Sn=n2+n2,等比数列bn的前n项和为Tn,若b1=a1+1,b2-a2=2.(1)求数列an,bn的通项公式;(2)求满足Tn+an300的最小的n值.解析(1)a1=S1=1,n1时,an=Sn-Sn-1=n2+n2-(n-1)2+(n-1)2=n,又n=1时,a1=1,所以an=n成立,an=n(nN*),则由题意可知b1=2,b2=4,bn的公比q=42=2,bn=2n(nN*).(2)Tn=2(1-2n)1-2=2(2n-1),Tn+an=2(2n-1)+n,Tn+an随n的增大而增大,又T7+a7=2127+7=261300,所求最小的n值为8.炼技法【方法集训】方法1错位相减法求和1.已知数列an的前n项和为Sn,a1=5,nSn+1-(n+1)Sn=n2+n.(1)求证:数列Snn为等差数列;(2)令bn=2nan,求数列bn的前n项和Tn.解析(1)证明:由nSn+1-(n+1)Sn=n2+n得Sn+1n+1-Snn=1,又S11=5,所以数列Snn是首项为5,公差为1的等差数列.(2)由(1)可知Snn=5+(n-1)=n+4,所以Sn=n2+4n.当n2时,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3.又a1=5也符合上式,所以an=2n+3(nN*),所以bn=(2n+3)2n,所以Tn=52+722+923+(2n+3)2n,2Tn=522+723+924+(2n+1)2n+(2n+3)2n+1,由-得Tn=(2n+3)2n+1-10-(23+24+2n+1)=(2n+3)2n+1-10-23(1-2n-1)1-2=(2n+3)2n+1-10-(2n+2-8)=(2n+1)2n+1-2.2.已知数列an是等比数列,a2=4,a3+2是a2和a4的等差中项.(1)求数列an的通项公式;(2)设bn=2log2an-1,求数列anbn的前n项和Tn.解析(1)设数列an的公比为q,因为a2=4,所以a3=4q,a4=4q2.因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4,即2(4q+2)=4+4q2,化简得q2-2q=0.因为公比q0,所以q=2.所以an=a2qn-2=42n-2=2n(nN*).(2)因为an=2n,所以bn=2log2an-1=2n-1,所以anbn=(2n-1)2n,则Tn=12+322+523+(2n-3)2n-1+(2n-1)2n,2Tn=122+323+524+(2n-3)2n+(2n-1)2n+1.由-得,-Tn=2+222+223+22n-(2n-1)2n+1=2+24(1-2n-1)1-2-(2n-1)2n+1=-6-(2n-3)2n+1,所以Tn=6+(2n-3)2n+1.方法2裂项相消法求和3.已知数列an(nN*)是公差不为0的等差数列,a1=1,且1a2,1a4,1a8成等比数列.(1)求数列an的通项公式;(2)设数列1anan+1的前n项和为Tn,求证:Tn1.解析(1)设an的公差为d.因为1a2,1a4,1a8成等比数列,所以1a42=1a21a8,即1a1+3d2=1a1+d1a1+7d,化简得(a1+3d)2=(a1+d)(a1+7d),又a1=1,且d0,解得d=1.所以an=a1+(n-1)d=n.(2)证明:由(1)得1anan+1=1n(n+1)=1n-1n+1,所以Tn=1-12+12-13+1n-1n+1=1-1n+11.因此Tn0,所以q=2.所以,bn=2n.由b3=a4-2a1,可得3d-a1=8.由S11=11b4,可得a1+5d=16,联立,解得a1=1,d=3,由此可得an=3n-2.所以,数列an的通项公式为an=3n-2,数列bn的通项公式为bn=2n.(2)设数列a2nb2n-1的前n项和为Tn,由a2n=6n-2,b2n-1=24n-1,有a2nb2n-1=(3n-1)4n,故Tn=24+542+843+(3n-1)4n,4Tn=242+543+844+(3n-4)4n+(3n-1)4n+1,上述两式相减,得-3Tn=24+342+343+34n-(3n-1)4n+1=12(1-4n)1-4-4-(3n-1)4n+1=-(3n-2)4n+1-8.得Tn=3n-234n+1+83.所以,数列a2nb2n-1的前n项和为3n-234n+1+83.方法总结(1)等差数列与等比数列中有五个量a1,n,d(或q),an,Sn,一般可以“知三求二”,通过列方程(组)求关键量a1和d(或q),问题可迎刃而解.(2)数列an是公差为d的等差数列,bn是公比q1的等比数列,求数列anbn的前n项和适用错位相减法.2.(2016天津文,18,13分)已知an是等比数列,前n项和为Sn(nN*),且1a1-1a2=2a3,S6=63.(1)求an的通项公式;(2)若对任意的nN*,bn是log2an和log2an+1的等差中项,求数列(-1)nbn2的前2n项和.解析(1)设数列an的公比为q.由已知,有1a1-1a1q=2a1q2,解得q=2,或q=-1.又由S6=a11-q61-q=63,知q-1,所以a11-261-2=63,得a1=1.所以an=2n-1.(2)由题意,得bn=12(log2an+log2an+1)=12(log22n-1+log22n)=n-12,即bn是首项为12,公差为1的等差数列.设数列(-1)nbn2的前n项和为Tn,则T2n=(-b12+b22)+(-b32+b42)+(-b2n-12+b2n2)=b1+b2+b3+b4+b2n-1+b2n=2n(b1+b2n)2=2n2.评析本题主要考查等差数列、等比数列及其前n项和公式等基础知识,考查数列求和的基本方法和运算求解能力.3.(2015天津,18,13分)已知数列an满足an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和an的通项公式;(2)设bn=log2a2na2n-1,nN*,求数列bn的前n项和.解析(1)由已知,得(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q1,故a3=a2=2,由a3=a1q,得q=2.当n=2k-1(kN*)时,an=a2k-1=2k-1=2n-12;当n=2k(kN*)时,an=a2k=2k=2n2.所以,an的通项公式为an=2n-12,n为奇数,2n2,n为偶数.(2)由(1)得bn=log2a2na2n-1=n2n-1.设bn的前n项和为Sn,则Sn=1120+2121+3122+(n-1)12n-2+n12n-1,12Sn=1121+2122+3123+(n-1)12n-1+n12n,上述两式相减,得12Sn=1+12+122+12n-1-n2n=1-12n1-12-n2n=2-22n-n2n,整理得,Sn=4-n+22n-1.所以,数列bn的前n项和为4-n+22n-1,nN*.评析本题主要考查等比数列及其前n项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.4.(2015天津文,18,13分)已知an是各项均为正数的等比数列,bn是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求an和bn的通项公式;(2)设cn=anbn,nN*,求数列cn的前n项和.解析(1)设数列an的公比为q,数列bn的公差为d,由题意知q0.由已知,有2q2-3d=2,q4-3d=10,消去d,整理得q4-2q2-8=0.又因为q0,解得q=2,所以d=2.所以数列an的通项公式为an=2n-1,nN*;数列bn的通项公式为bn=2n-1,nN*.(2)由(1)有cn=(2n-1)2n-1,设cn的前n项和为Sn,则Sn=120+321+522+(2n-3)2n-2+(2n-1)2n-1,2Sn=121+322+523+(2n-3)2n-1+(2n-1)2n,上述两式相减,得-Sn=1+22+23+2n-(2n-1)2n=2n+1-3-(2n-1)2n=-(2n-3)2n-3,所以,Sn=(2n-3)2n+3,nN*.评析本题主要考查等差数列、等比数列及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.考点二数列的综合应用1.(2018天津,18,13分)设an是等比数列,公比大于0,其前n项和为Sn(nN*),bn是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求an和bn的通项公式;(2)设数列Sn的前n项和为Tn(nN*).(i)求Tn;(ii)证明k=1n(Tk+bk+2)bk(k+1)(k+2)=2n+2n+2-2(nN*).解析(1)设等比数列an的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.由q0,可得q=2,故an=2n-1.设等差数列bn的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故bn=n.所以,数列an的通项公式为an=2n-1,数列bn的通项公式为bn=n.(2)(i)由(1),有Sn=1-2n1-2=2n-1,故Tn=k=1n(2k-1)=k=1n2k-n=2(1-2n)1-2-n=2n+1-n-2.(ii)证明:因为(Tk+bk+2)bk(k+1)(k+2)=(2k+1-k-2+k+2)k(k+1)(k+2)=k2k+1(k+1)(k+2)=2k+2k+2-2k+1k+1,所以k=1n(Tk+bk+2)bk(k+1)(k+2)=233-222+244-233+2n+2n+2-2n+1n+1=2n+2n+2-2.方法总结解决数列求和问题的两种思路(1)利用转化的思想将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.2.(2014天津,19,14分)已知q和n均为给定的大于1的自然数.设集合M=0,1,2,q-1,集合A=x|x=x1+x2q+xnqn-1,xiM,i=1,2,n.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,tA,s=a1+a2q+anqn-1,t=b1+b2q+bnqn-1,其中ai,biM,i=1,2,n.证明:若anbn,则st.解析(1)当q=2,n=3时,M=0,1,A=x|x=x1+x22+x322,xiM,i=1,2,3.可得,A=0,1,2,3,4,5,6,7.(2)证明:由s,tA,s=a1+a2q+anqn-1,t=b1+b2q+bnqn-1,ai,biM,i=1,2,n及anbn,可得s-t=(a1-b1)+(a2-b2)q+(an-1-bn-1)qn-2+(an-bn)qn-1(q-1)+(q-1)q+(q-1)qn-2-qn-1=(q-1)(1-qn-1)1-q-qn-1=-10.所以s0,d0时,满足am0,am+10的项数m,可使得Sn取得最大值,最大值为Sm;当a10时,满足am0,am+10的项数m,可使得Sn取得最小值,最小值为Sm.2.(2016课标,17,12分)Sn为等差数列an的前n项和,且a1=1,S7=28.记bn=lgan,其中x表示不超过x的最大整数,如0.9=0,lg99=1.(1)求b1,b11,b101;(2)求数列bn的前1000项和.解析(1)设an的公差为d,据已知有7+21d=28,解得d=1.所以an的通项公式为an=n.b1=lg1=0,b11=lg11=1,b101=lg101=2.(2)因为bn=0,1n10,1,10n100,2,100n0,an2+2an=4Sn+3.(1)求an的通项公式;(2)设bn=1anan+1,求数列bn的前n项和.解析(1)由an2+2an=4Sn+3,可知an+12+2an+1=4Sn+1+3.可得an+12-an2+2(an+1-an)=4an+1,即2(an+1+an)=an+12-an2=(an+1+an)(an+1-an).由于an0,可得an+1-an=2.又a12+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以an是首项为3,公差为2的等差数列,故通项公式为an=2n+1.(2)由an=2n+1可知bn=1anan+1=1(2n+1)(2n+3)=1212n+1-12n+3.设数列bn的前n项和为Tn,则Tn=b1+b2+bn=1213-15+15-17+12n+1-12n+3=n3(2n+3).4.(2014四川,19,12分)设等差数列an的公差为d,点(an,bn)在函数f(x)=2x的图象上(nN*).(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列an的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-1ln2,求数列anbn的前n项和Tn.解析(1)由已知得,b7=2a7,b8=2a8=4b7,有2a8=42a7=2a7+2.解得d=a8-a7=2.所以,Sn=na1+n(n-1)2d=-2n+n(n-1)=n2-3n.(2)函数f(x)=2x在(a2,b2)处的切线方程为y-2a2=(2a2ln2)(x-a2),它在x轴上的截距为a2-1ln2.由题意得,a2-1ln2=2-1ln2,解得a2=2.所以d=a2-a1=1.从而an=n,bn=2n.所以Tn=12+222+323+n-12n-1+n2n,2Tn=11+22+322+n2n-1.因此,2Tn-Tn=1+12+122+12n-1-n2n=2-12n-1-n2n=2n+1-n-22n.所以,Tn=2n+1-n-22n.评析本题考查等差数列与等比数列的概念、等差数列与等比数列通项公式与前n项和、导数的几何意义等基础知识,考查运算求解能力.考点二数列的综合应用1.(2018浙江,20,15分)已知等比数列an的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列bn满足b1=1,数列(bn+1-bn)an的前n项和为2n2+n.(1)求q的值;(2)求数列bn的通项公式.解析(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8q+1q=20,解得q=2或q=12,因为q1,所以q=2.(2)设cn=(bn+1-bn)an,数列cn的前n项和为Sn.由cn=S1,n=1,Sn-Sn-1,n2,解得cn=4n-1.由(1)可知an=2n-1,所以bn+1-bn=(4n-1)12n-1,故bn-bn-1=(4n-5)12n-2,n2,bn-b1=(bn-bn-1)+(bn-1-bn-2)+(b3-b2)+(b2-b1)=(4n-5)12n-2+(4n-9)12n-3+712+3.设Tn=3+712+11122+(4n-5)12n-2,n2,12Tn=312+7122+(4n-9)12n-2+(4n-5)12n-1,所以12Tn=3+412+4122+412n-2-(4n-5)12n-1,因此Tn=14-(4n+3)12n-2,n2,又b1=1,所以bn=15-(4n+3)12n-2.易错警示利用错位相减法求和时,要注意以下几点:(1)错位相减法求和,只适合于数列anbn,其中an为等差数列,bn为等比数列.(2)在等式两边所乘的数是等比数列bn的公比.(3)两式相减时,一定要错开一位.(4)特别要注意相减后等比数列的次数.(5)进行检验.2.(2018江苏,20,16分)设an是首项为a1,公差为d的等差数列,bn是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|an-bn|b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b10,mN*,q(1,m2,证明:存在dR,使得|an-bn|b1对n=2,3,m+1均成立,并求d的取值范围(用b1,m,q表示).解析(1)由条件知an=(n-1)d,bn=2n-1.因为|an-bn|b1对n=1,2,3,4均成立,即11,1d3,32d5,73d9,得73d52.因此,d的取值范围为73,52.(2)由条件知:an=b1+(n-1)d,bn=b1qn-1.若存在dR,使得|an-bn|b1(n=2,3,m+1)均成立,即|b1+(n-1)d-b1qn-1|b1(n=2,3,m+1).即当n=2,3,m+1时,d满足qn-1-2n-1b1dqn-1n-1b1.因为q(1,m2,所以10,对n=2,3,m+1均成立.因此,取d=0时,|an-bn|b1对n=2,3,m+1均成立.下面讨论数列qn-1-2n-1的最大值和数列qn-1n-1的最小值(n=2,3,m+1).当2nm时,qn-2n-qn-1-2n-1=nqn-qn-nqn-1+2n(n-1)=n(qn-qn-1)-qn+2n(n-1),当10.因此,当2nm+1时,数列qn-1-2n-1单调递增,故数列qn-1-2n-1的最大值为qm-2m.设f(x)=2x(1-x),当x0时,f(x)=(ln2-1-xln2)2x0.所以f(x)单调递减,从而f(x)f(0)=1.当2nm时,qnnqn-1n-1=q(n-1)n21n1-1n=f1n1.因此,当2nm+1时,数列qn-1n-1单调递减,故数列qn-1n-1的最小值为qmm.因此,d的取值范围为b1(qm-2)m,b1qmm.疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d的范围,使得|an-bn|b1对n=2,3,m+1都成立,首先把d分离出来,变成qn-1-2n-1b1dqn-1n-1b1,难点在于讨论qn-1-2n-1b1的最大值和qn-1n-1b1的最小值.对于数列qn-1-2n-1,可以通过作差讨论其单调性,而对于数列qn-1n-1,要作商讨论单调性,因为qnnqn-1n-1=q(n-1)n=q1-1n,当2nm时,1qn2.所以q1-1n21n1-1n,可以构造函数f(x)=2x(1-x),通过讨论f(x)在(0,+)上的单调性去证明f1n60n+800?若存在,求n的最小值;若不存在,说明理由.解析(1)设数列an的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,an=2;当d=4时,an=2+(n-1)4=4n-2,从而得数列an的通项公式为an=2或an=4n-2.(2)当an=2时,Sn=2n.显然2n60n+800成立.当an=4n-2时,Sn=n2+(4n-2)2=2n2.令2n260n+800,即n2-30n-4000,解得n40或n60n+800成立,n的最小值为41.综上,当an=2时,不存在满足题意的n;当an=4n-2时,存在满足题意的n,其最小值为41.评析本题考查了数列的通项公式和求和公式,考查了分类讨论的方法.C组教师专用题组1.(2013课标,12,5分)设AnBnCn的三边长分别为an,bn,cn,AnBnCn的面积为Sn,n=1,2,3,.若b1c1,b1+c1=2a1,an+1=an,bn+1=cn+an2,cn+1=bn+an2,则()A.Sn为递减数列B.Sn为递增数列C.S2n-1为递增数列,S2n为递减数列D.S2n-1为递减数列,S2n为递增数列答案B2.(2013重庆,12,5分)已知an是等差数列,a1=1,公差d0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.答案643.(2012课标,16,5分)数列an满足an+1+(-1)nan=2n-1,则an的前60项和为.答案18304.(2015浙江,20,15分)已知数列an满足a1=12且an+1=an-an2(nN*).(1)证明:1anan+12(nN*);(2)设数列an2的前n项和为Sn,证明:12(n+2)Snn12(n+1)(nN*).证明(1)由题意得an+1-an=-an20,即an+1an,故an12.由an=(1-an-1)an-1得an=(1-an-1)(1-an-2)(1-a1)a10.由00,于是(a2n+1-a2n)+(a2n-a2n-1)0.但122n122n-1,所以|a2n+1-a2n|0,因此a2n-a2n-1=122n-1=(-1)2n22n-1.因为a2n是递减数列,同理可得,a2n+1-a2n0,dS40B.a1d0,dS40,dS40D.a1d0答案B4.(2017天津耀华中学第二次月考,6)已知等差数列an的前n项和为Sn,且S21=42,若记bn=2a112-a9-a13,则数列bn()A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列答案C5.(2019届天津七校联考,7)已知数列an的各项均为正数,a1=1,an+1+an=1an+1-an,则数列1an+1+an的前15项和为()A.3B.4C.127D.128答案A二、填空题(每小题5分,共10分)6.(2017天津南开中学第五次月考,12)设Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列,则a2a1=.答案37.(2017天津南开中学模拟,11)已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则b2a1+a2的值为.答案310三、解答题(共75分)8.(2019届天津南开中学第一次月考,18)设数列an的前n项和Sn=2n2,bn为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列an和bn的通项公式;(2)设cn=anbn,求数列cn的前n项和Tn.解析(1)当n2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,当n=1时,a1=S1=2满足上式,故an的通项公式为an=4n-2.设bn的公比为q,由a1=b1,b2(a2-a1)=b1知,b1=2,b2=12,q=14,bn=b1qn-1=214n-1,即bn=24n-1.(2)cn=anbn=4n-224n-1=(2n-1)4n-1,Tn=c1+c2+cn=1+341+542+(2n-1)4n-1,4Tn=14+342+543+(2n-3)4n-1+(2n-1)4n.两式相减得3Tn=-1-2(41+42+43+4n-1)+(2n-1)4n=13(6n-5)4n+5.Tn=19(6n-5)4n+5.解题分析本题主要考查等差数列和等比数列的相关知识.(1)已知数列an的前n项和Sn,则通项为an=Sn-Sn-1(n2),a1=S1=2=b1,再根据b2(a2-a1)=b1可求得数列bn的通项公式.(2)根据(1)可知数列an和bn的通项公式,进而可得数列cn的通项公式,再运用错位相减法求其前n项和.9.(2019届天津南开中学统练(2),18)已知Sn是等比数列an的前n项和,a10,S4,S2,S3成等差数列,16是a2和a8的等比中项.(1)求an的通项公式;(2)若等差数列bn中,b1=1,前9项和为27,令cn=2anbn,求数列cn的前n项和Tn.解析(1)设an的公比为q,由S4,S2,S3成等差数列可得2S2=S3+S4,即S3-S2+S4-S2=0,所以2a3+a4=0,所以q=-2,又16是a2和a8的等比中项,所以a2a8=162,所以a1qa1q7=162,所以a1=1(a10故舍去-1),所以an=a1qn-1=(-2)n-1.(2)设bn的公差为d,因为b1=1,S9=9b5=27,所以b5=1+4d=3,所以d=12,bn=n+12,cn=2anbn=(n+1)(-2)n-1,Tn=2(-2)0+3(-2)+4(-2)2+(n+1)(-2)n-1,-2Tn=2(-2)+3(-2)2+n(-2)n-1+(n+1)(-2)n,-得,3Tn=2+(-2)+(-2)2+(-2)n-1-(n+1)(-2)n=2+-21-(-2)n-11-(-2)-(n+1)(-2)n=2+-2-(-2)n3-(n+1)(-2)n=43-n+43(-2)n,所以Tn=49-3n+49(-2)n.10.(2019届天津耀华中学第二次月考,18)等差数列an中,a1=3,前n项和为Sn,数列bn是首项为1,公比为q(q1),且各项均为正数的等比数列,已知b2+S2=12,q=S2b2.(1)求an与bn;(2)证明:131S1+1S2+1Sn23.解析(1)设an的公差为d,依题意得q+6+d=12,q=6+dq,解得q=3或q=-4.因为数列bn各项均为正数,所以q=3,所以d=3,所以an=3+3(n-1)=3n,bn=3n-1.(2)证明:因为Sn=3n(n+1)2,所以1Sn=23n(n+1)=231n-1n+1,所以1S1+1S2+1Sn=231-12+12-13+1n-1n+1=231-1n+123.又231-1n+1单调递增,且n为正整数,所以当n=1时,231-1n+1有最小值13.所以不等式成立.11.(2019届天津耀华中学统练(2),20)已知数列an,a1=1,a1+2a2+3a3+nan=n+12an+1(nN*).(1)求数列an的通项公式;(2)求数列n2an的前n项和Tn;(3)若存在nN*,使得an(n+1)成立,求实数的最小值.解析(1)当n2时,由题意得a1+2a2+3a3+(n-1)an-1=n2an,a1+2a2+3a3+nan=n+12an+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论