2018版高考数学复习立体几何8.8立体几何中的向量方法(二)__求空间角和距离理.docx_第1页
2018版高考数学复习立体几何8.8立体几何中的向量方法(二)__求空间角和距离理.docx_第2页
2018版高考数学复习立体几何8.8立体几何中的向量方法(二)__求空间角和距离理.docx_第3页
2018版高考数学复习立体几何8.8立体几何中的向量方法(二)__求空间角和距离理.docx_第4页
2018版高考数学复习立体几何8.8立体几何中的向量方法(二)__求空间角和距离理.docx_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章 立体几何 8.8 立体几何中的向量方法(二)求空间角和距离 理1两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角a与b的夹角范围(0,0,求法cos cos 2.直线与平面所成角的求法设直线l的方向向量为a,平面的法向量为n,直线l与平面所成的角为,a与n的夹角为,则sin |cos |.3求二面角的大小(1)如图,AB,CD分别是二面角l的两个面内与棱l垂直的直线,则二面角的大小,(2)如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos |cosn1,n2|,二面角的平面角大小是向量n1与n2的夹角(或其补角)【知识拓展】利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则|AB|.(2)点到平面的距离如图所示,已知AB为平面的一条斜线段,n为平面的法向量,则B到平面的距离为|.【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)两直线的方向向量所成的角就是两条直线所成的角()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角()(3)两个平面的法向量所成的角是这两个平面所成的角()(4)两异面直线夹角的范围是(0,直线与平面所成角的范围是0,二面角的范围是0,()(5)若二面角a的两个半平面,的法向量n1,n2所成角为,则二面角a的大小是.()1(2017烟台质检)已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角为()A45 B135C45或135 D90答案C解析cosm,n,即m,n45.两平面所成的二面角为45或18045135.2已知向量m,n分别是直线l和平面的方向向量和法向量,若cosm,n,则l与所成的角为()A30 B60 C120 D150答案A解析设l与所成角为,cosm,n,sin |cosm,n|,090,30.故选A.3(2016郑州模拟)如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CACC12CB,则直线BC1与直线AB1所成角的余弦值为()A. B.C. D.答案A解析设CA2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得向量(2,2,1),(0,2,1),由向量的夹角公式得cos,故选A.4(教材改编)如图,正三棱柱(底面是正三角形的直棱柱)ABCA1B1C1的底面边长为2,侧棱长为2,则AC1与侧面ABB1A1所成的角为_答案解析以A为原点,以,(AEAB),所在直线为坐标轴(如图)建立空间直角坐标系,设D为A1B1中点,则A(0,0,0),C1(1,2),D(1,0,2),(1,2),(1,0,2)C1AD为AC1与平面ABB1A1所成的角,cosC1AD,又C1AD,C1AD.5P是二面角AB棱上的一点,分别在平面、上引射线PM、PN,如果BPMBPN45,MPN60,那么二面角AB的大小为_答案90解析不妨设PMa,PNb,如图,作MEAB于E,NFAB于F,EPMFPN45,PEa,PFb,()()abcos 60abcos 45abcos 45ab0,二面角AB的大小为90.题型一求异面直线所成的角例1(2015课标全国)如图,四边形ABCD为菱形,ABC120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE2DF,AEEC.(1)证明:平面AEC平面AFC;(2)求直线AE与直线CF所成角的余弦值(1)证明如图所示,连接BD,设BDACG,连接EG,FG,EF.在菱形ABCD中,不妨设GB1.由ABC120,可得AGGC.由BE平面ABCD,ABBC2,可知AEEC.又AEEC,所以EG,且EGAC.在RtEBG中,可得BE,故DF.在RtFDG中,可得FG.在直角梯形BDFE中,由BD2,BE,DF,可得EF,从而EG2FG2EF2,所以EGFG.又ACFGG,可得EG平面AFC.因为EG平面AEC,所以平面AEC平面AFC.(2)解如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,|为单位长度,建立空间直角坐标系Gxyz,由(1)可得A(0,0),E(1,0,),F,C(0,0),所以(1,),.故cos,.所以直线AE与直线CF所成角的余弦值为.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值如图所示正方体ABCDABCD,已知点H在ABCD的对角线BD上,HDA60.求DH与CC所成的角的大小解如图所示,以D为原点,DA为单位长度,建立空间直角坐标系Dxyz,则(1,0,0),(0,0,1)设(m,m,1)(m0),由已知,60,由|cos,可得2m,解得m,(,1),cos,又,0,180,45,即DH与CC所成的角为45.题型二求直线与平面所成的角例2(2016全国丙卷)如图,四棱锥PABCD中,PA底面ABCD,ADBC,ABADAC3,PABC4,M为线段AD上一点,AM2MD,N为PC的中点(1)证明MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值(1)证明由已知得AMAD2.取BP的中点T,连接AT,TN,由N为PC中点知TNBC,TNBC2.又ADBC,故TN綊AM,四边形AMNT为平行四边形,于是MNAT.因为AT平面PAB,MN平面PAB,所以MN平面PAB.(2)解取BC的中点E,连接AE.由ABAC得AEBC,从而AEAD,AE .以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Axyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,(0,2,4),.设n(x,y,z)为平面PMN的法向量,则即可取n(0,2,1)于是|cosn,|.设AN与平面PMN所成的角为,则sin ,直线AN与平面PMN所成角的正弦值为.思维升华利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角在平面四边形ABCD中,ABBDCD1,ABBD,CDBD.将ABD沿BD折起,使得平面ABD平面BCD,如图所示(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值(1)证明平面ABD平面BCD,平面ABD平面BCDBD,AB平面ABD,ABBD,AB平面BCD.又CD平面BCD,ABCD.(2)解过点B在平面BCD内作BEBD,如图由(1)知AB平面BCD,BE平面BCD,BD平面BCD.ABBE,ABBD.以B为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M(0,),则(1,1,0),(0,),(0,1,1)设平面MBC的法向量n(x0,y0,z0),则即取z01,得平面MBC的一个法向量n(1,1,1)设直线AD与平面MBC所成角为,则sin |cosn,|,即直线AD与平面MBC所成角的正弦值为.题型三求二面角例3(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线(1)已知G,H分别为EC,FB的中点,求证:GH平面ABC;(2)已知EFFBAC2,ABBC,求二面角FBCA的余弦值(1)证明设FC的中点为I,连接GI,HI,在CEF中,因为点G是CE的中点,所以GIEF.又EFOB,所以GIOB.在CFB中,因为H是FB的中点,所以HIBC,又HIGII,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.(2)解连接OO,则OO平面ABC.又ABBC,且AC是圆O的直径,所以BOAC.以O为坐标原点,建立如图所示的空间直角坐标系Oxyz.由题意得B(0,2,0),C(2,0,0)过点F作FM垂直OB于点M,所以FM3,可得F(0,3)故(2,2,0),(0,3)设m(x,y,z)是平面BCF的一个法向量由可得可得平面BCF的一个法向量m,因为平面ABC的一个法向量n(0,0,1),所以cosm,n.所以二面角FBCA的余弦值为.思维升华利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小(2016天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,ABBE2.(1)求证:EG平面ADF;(2)求二面角OEFC的正弦值;(3)设H为线段AF上的点,且AHHF,求直线BH和平面CEF所成角的正弦值(1)证明依题意,OF平面ABCD,如图,以O为原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(1,1,0),B(1,1,0),C(1,1,0),D(1,1,0),E(1,1,2),F(0,0,2),G(1,0,0)依题意,(2,0,0),(1,1,2)设n1(x1,y1,z1)为平面ADF的法向量,则即不妨取z11,可得n1(0,2,1),又(0,1,2),可得n10,又因为直线EG平面ADF,所以EG平面ADF.(2)解易证(1,1,0)为平面OEF的一个法向量,依题意,(1,1,0),(1,1,2)设n2(x2,y2,z2)为平面CEF的法向量,则即不妨取 x21,可得n2(1,1,1)因此有cos,n2,于是sin,n2.所以二面角OEFC的正弦值为.(3)解由AHHF,得AHAF.因为(1,1,2),所以,进而有H,从而.因此cos,n2.所以直线BH和平面CEF所成角的正弦值为.题型四求空间距离(供选用)例4如图,BCD与MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,AB2,求点A到平面MBC的距离解如图,取CD的中点O,连接OB,OM,因为BCD与MCD均为正三角形,所以OBCD,OMCD,又平面MCD平面BCD,所以MO平面BCD.以O为坐标原点,直线OC,BO,OM分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz.因为BCD与MCD都是边长为2的正三角形,所以OBOM,则O(0,0,0),C(1,0,0),M(0,0,),B(0,0),A(0,2),所以(1,0),(0,)设平面MBC的法向量为n(x,y,z),由得即取x,可得平面MBC的一个法向量为n(,1,1)又(0,0,2),所以所求距离为d.思维升华求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离;(2)等体积法;(3)向量法其中向量法在易建立空间直角坐标系的规则图形中较简便(2016四川成都外国语学校月考)如图所示,在四棱锥PABCD中,侧面PAD底面ABCD,侧棱PAPD,PAPD,底面ABCD为直角梯形,其中BCAD,ABAD,ABBC1,O为AD中点(1)求直线PB与平面POC所成角的余弦值;(2)求B点到平面PCD的距离;(3)线段PD上是否存在一点Q,使得二面角QACD的余弦值为?若存在,求出的值;若不存在,请说明理由解(1)在PAD中,PAPD,O为AD中点,POAD.又侧面PAD底面ABCD,平面PAD平面ABCDAD,PO平面PAD,PO平面ABCD.在PAD中,PAPD,PAPD,AD2.在直角梯形ABCD中,O为AD的中点,ABAD,OCAD.以O为坐标原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,如图所示,则P(0,0,1),A(0,1,0),B(1,1,0),C(1,0,0),D(0,1,0),(1,1,1)易证OA平面POC,(0,1,0)为平面POC的法向量,cos,PB与平面POC所成角的余弦值为.(2)(1,1,1),设平面PCD的法向量为u(x,y,z),则取z1,得u(1,1,1)则B点到平面PCD的距离d.(3)假设存在,且设(01)(0,1,1),(0,),(0,1),Q(0,1)设平面CAQ的法向量为m(x,y,z),则取z1,得m(1,1,1)平面CAD的一个法向量为n(0,0,1),二面角QACD的余弦值为,|cosm,n|.整理化简,得321030.解得或3(舍去),存在,且.6利用空间向量求解空间角典例(12分)如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,点E为棱PC的中点(1)证明:BEDC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BFAC,求二面角FABP的余弦值规范解答(1)证明依题意,以点A为原点建立空间直角坐标系如图,可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2)1分由E为棱PC的中点,得E(1,1,1)(0,1,1),(2,0,0),故0,所以BEDC.3分(2)解(1,2,0),(1,0,2)设n(x,y,z)为平面PBD的一个法向量,则即不妨令y1,5分可得n(2,1,1)于是有cosn,所以,直线BE与平面PBD所成角的正弦值为.7分(3)解(1,2,0),(2,2,2),(2,2,0),(1,0,0)由点F在棱PC上,设,01,故(12,22,2)由BFAC,得0,因此,2(12)2(22)0,解得,即(,)9分设n1(x,y,z)为平面FAB的一个法向量,则即不妨令z1,可得n1(0,3,1)取平面ABP的法向量n2(0,1,0),则cosn1,n2.易知,二面角FABP是锐角,所以其余弦值为.12分利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾查看关键点、易错点和答题规范1若直线l的方向向量与平面的法向量的夹角等于120,则直线l与平面所成的角等于()A120 B60C30 D60或30答案C解析设直线l与平面所成的角为,直线l与平面的法向量的夹角为.则sin |cos |cos 120|.又0,90,30,故选C.2(2016广州模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB4,AC6,BD8,CD2,则该二面角的大小为()A150 B45C60 D120答案C解析如图所示,二面角的大小就是,22222()2222.(2)262428224.因此24,cos,60,故二面角为60.3在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A. B. C. D.答案B解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为1,则A1(0,0,1),E(1,0,),D(0,1,0),(0,1,1),(1,0,)设平面A1ED的一个法向量为n1(1,y,z),则有即n1(1,2,2)平面ABCD的一个法向量为n2(0,0,1),cosn1,n2,即所成的锐二面角的余弦值为.4(2016长春模拟)在三棱锥PABC中,PA平面ABC,BAC90,D,E,F分别是棱AB,BC,CP的中点,ABAC1,PA2,则直线PA与平面DEF所成角的正弦值为()A. B. C. D.答案C解析以A为原点,AB,AC,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,由ABAC1,PA2,得A(0,0,0),B(1,0,0),C(0,1,0),P(0,0,2),D(,0,0),E(,0),F(0,1)(0,0,2),(0,0),(,1)设平面DEF的法向量为n(x,y,z),则由得取z1,则n(2,0,1),设直线PA与平面DEF所成的角为,则sin ,直线PA与平面DEF所成角的正弦值为.故选C.5已知正四棱柱ABCDA1B1C1D1中,AB2,CC12,E为CC1的中点,则直线AC1到平面BDE的距离为()A2 B. C. D1答案D解析以D为原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系(如图),则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,2),E(0,2,),易知AC1平面BDE.设n(x,y,z)是平面BDE的法向量,则取y1,则n(1,1,)为平面BDE的一个法向量,又(2,0,0),点A到平面BDE的距离是d1.故直线AC1到平面BDE的距离为1.6.如图所示,三棱柱ABCA1B1C1的侧棱长为3,底面边长A1C1B1C11,且A1C1B190,D点在棱AA1上且AD2DA1,P点在棱C1C上,则的最小值为()A. BC. D答案B解析建立如图所示的空间直角坐标系,则D(1,0,2),B1(0,1,3),设P(0,0,z),则(1,0,2z),(0,1,3z),00(2z)(3z)(z)2,故当z时,取得最小值为.7(2016合肥模拟)在长方体ABCDA1B1C1D1中,AB2,BCAA11,则直线D1C1与平面A1BC1所成角的正弦值为_答案解析如图,建立空间直角坐标系Dxyz,则D1(0,0,1),C1(0,2,1),A1(1,0,1),B(1,2,0)(0,2,0),(1,2,0),(0,2,1),设平面A1BC1的一个法向量为n(x,y,z),由得令y1,得n(2,1,2),设直线D1C1与平面A1BC1所成角为,则sin |cos,n|,即直线D1C1与平面A1BC1所成角的正弦值为.8在正四棱柱ABCDA1B1C1D1中,AA12AB,则直线CD与平面BDC1所成角的正弦值等于_答案解析以D为坐标原点,建立空间直角坐标系,如图,设AA12AB2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则(0,1,0),(1,1,0),(0,1,2)设平面BDC1的法向量为n(x,y,z),则n,n,所以有令y2,得平面BDC1的一个法向量为n(2,2,1)设CD与平面BDC1所成的角为,则sin |cosn,|.9(2016石家庄模拟)已知点E,F分别在正方体ABCDA1B1C1D1的棱BB1,CC1上,且B1E2EB,CF2FC1,则平面AEF与平面ABC所成的二面角的正切值为_答案解析如图,建立空间直角坐标系Dxyz,设DA1,由已知条件得A(1,0,0),E(1,1,),F(0,1,),(0,1,),(1,1,),设平面AEF的法向量为n(x,y,z),平面AEF与平面ABC所成的二面角为,由图知为锐角,由得令y1,z3,x1,则n(1,1,3),取平面ABC的法向量为m(0,0,1),则cos |cosn,m|,tan .10(2016南昌模拟)如图(1),在边长为4的菱形ABCD中,DAB60,点E,F分别是边CD,CB的中点,ACEFO,沿EF将CEF翻折到PEF,连接PA,PB,PD,得到如图(2)的五棱锥PABFED,且PB.(1)求证:BD平面POA;(2)求二面角BAPO的正切值(1)证明点E,F分别是边CD,CB的中点,BDEF.菱形ABCD的对角线互相垂直,BDAC,EFAC,EFAO,EFPO.AO平面POA,PO平面POA,AOPOO,EF平面POA,BD平面POA.(2)解设AOBDH,连接BO.DAB60,ABD为等边三角形,BD4,BH2,HA2,HOPO,在RtBHO中,BO.在PBO中,BO2PO210PB2,POBO.POEF,EFBOO,EF平面BFED,BO平面BFED,PO平面BFED.以O为原点,OF所在直线为x轴,AO所在直线为y轴,OP所在直线为z轴,建立空间直角坐标系Oxyz,如图所示,则A(0,3,0),B(2,0),P(0,0,),H(0,0),(0,3,),(2,2,0)设平面PAB的法向量为n(x,y,z),由n,n,得令y1,得z3,x.平面PAB的一个法向量为n(,1,3)由(1)知平面PAO的一个法向量为(2,0,0),设二面角BAPO的平面角为,则cos |cosn,|,sin ,tan ,二面角BAPO的正切值为.11(2016四川)如图,在四棱锥PABCD中,ADBC,ADCPAB90,BCCDAD.E为棱AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角PCDA的大小为45,求直线PA与平面PCE所成角的正弦值解(1)在梯形ABCD中,AB与CD不平行延长AB,DC,相交于点M(M平面PAB),点M即为所求的一个点理由如下:由已知,BCED且BCED.所以四边形BCDE是平行四边形,从而CMEB.又EB平面PBE,CM平面PBE,所以CM平面PBE.(说明:延长AP至点N,使得APPN,则所找的点可以是直线MN上任意一点)(2)方法一由已知,CDPA,CDAD,PAADA,所以CD平面PAD,从而CDPD.所以PDA是二面角PCDA的平面角,所以PDA45,设BC1,则在RtPAD中,PAAD2.过点A作AHCE,交CE的延长线于点H,连接PH,易知PA平面ABCD,从而PACE,且PAAHA,于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论