论文 2.doc

玩具照相机某零件支架注塑模具设计【10张CAD图纸和说明书】

收藏

压缩包内文档预览:(预览前20页/共39页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10115677    类型:共享资源    大小:1.52MB    格式:RAR    上传时间:2018-05-22 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
玩具 照相机 零件 支架 注塑 模具设计 10 cad 图纸 以及 说明书 仿单
资源描述:

摘要

模具是工业生产的基础工艺装备,也是发展和实现少无切削技术不可缺少的工具。它在工业生产中使用极为广泛,是当代工业生产的重要手段和工艺发展方向,许多现代工业的发展和技术水平的提高,在很大程度上取决于模具工业的发展水平。因此,模具技术发展状况及水平的高低,直接影响到工业产品的发展。也是衡量一个国家工艺水平的重要标志之一。本次毕业设计的题目是照相机某零件支架注塑模具设计。本文主要论述了塑料注射模的基本原理和设计过程,并着重讲述了充电器外壳注射模的设计过程。首先,讲述了模具的作用和国内外的发展状况及其发展方向。然后论述了方案的选择和确定。再次对于所确定的方案给出了详细的设计过程和计算过程,最后还对所设计的模具进行了经济性可行性分析。

总的来说,所设计的这套模具经济合理,可行性强,生产方便,是一套实用性较强的模具。


关键词:注射模;定模;动模;抽芯;斜导柱

Abstract

      The molding tool is a foundation craft that industry produce to equip, it also a development with realizes the little having no slice the indispensable tool in the technique of cutting  .It is in industry produce the usage is extremely extensive, it an important means that contemporary industry produce to develop the direction with the craft, many modern industrial developments with horizontal exaltation in technique, be decided by the industrial development in molding tool level to a large extent. Therefore, moldings tool technique development condition and horizontal and high and low, affect the development of the industry product directly. Too is to measure the one of the horizontal and important markings in a national craft.

     The graduation project title is the camera bracket a parts injection mold design., this text discussed primarily the plastics injects the basic principle of the mold with design the process, combining to emphasize to relate the Chargers shell inject the design process of the mold. First, related the function of the molding tool with domestic and international development condition and its development directions. Then discussed the choice of the project with certain. Returns a project for making sure give a detailed design process with compute process; very much again the molding tool to design to preceded the economic viability assessment.

Total to say, a this set of molding tools for designing economy reasonable, the possibility is strong, producing the convenience, it a stronger molding tool in a set of function.


Keyword: Inject the mold; Settle the mold; Move the mold; Take out core; Inclined slippery piece





目  录

1 绪论 1

 1.1题目背景意义 1

   1.2塑料工业简介 1

   1.3我国塑料模具现状 2

   1.4塑料模具具发展趋 3

   1.5本文主要研究内容 3

2 制品的分析 4

   2.1制品的简介 4

      2.1.1对制品的分析主要包括以下几点 4

      2.1.2本设计中塑件各项要求 4

   2.2制品的工艺性及结构分析 4

      2.2.1结构分析 5

      2.2.3材料的性能分析 5

   2.3注射成形过程 7

      2.3.1 ABS的注射工艺参数 7

      2.3.2 ABS的主要性能指标 7

3 模具制造 8

   3.1确定型腔数量及排列方式 8

   3.2模具结构形式的确定 8

3.2.1多型腔单分型面模具 8

3.2.2多型腔多分型面模具 8

3.3注塑机型号的确定 8

3.3.1注射机的选用原则 9

3.3.2有关制品的计算 9

3.3.3 注射机型号的确定 9

3.3.4注射机及各个参数的校核 10

3.4分型面位置确定 11

3.4.1分型面的选择原则 11

    3.5 浇注系统的设计                                              12

3.5.1浇注系统设计原则 12

3.5.2主流道的设计 12

3.5.3冷料穴的设计 14

3.5.4浇口的设计 15

3.5.5浇注系统凝料的脱出机构 16

3.6脱模推出机构的确定 16

3.6.1脱模推出机构的设计原则 16

3.6.2制品推出的基本方式 17

3.7抽芯机构的设计 17

3.7.1侧向抽芯机构 18

3.8合模导向机构的设计 18

3.8.1导向机构的分类 19

3.8.2本设计中导柱的设计 19

3.9排气系统的设计 19

3.9.1排溢设计 19

3.9.2引气设计 19

3.9.3排气系统 19

3.9.4该套模具的排气方式 19

3.10温度调节系统设计 19

3.10.1加热系统 20

3.10.2冷却系统 20

3.11模架的确定和标准件的选用 20

3.12成形零件的结构设计和计算 21

3.12.1定模(凹模)的设计 22

3.12.2型芯(凸模)的设计 22

4 塑料模具材料的选用及技术要求 24

   4.1塑料模具材料的性能要求 24

   4.2塑料模具零件选材原则 24

   4.3模具的精度要求 24

      4.3.1模具零件的公差与配合选择 24

5模具工作过程 25

  5.1成型前的准备 25

     5.1.1原料的检验和预处理 25

     5.1.2料筒的清洗 25

     5.1.3嵌件的预热 25

     5.1.4脱模剂的选用 25

5.2注射过程 25

5.3脱模过程 26

5.4制品的后处理 26

5.4.1退火处理 26

5.4.2调湿处理 26

总结 27

参考文献 28

致 谢 29

毕业设计(论文)知识产权声明 30

毕业设计(论文)独创性声明 31


1  绪 论

1.1题目背景意义

近几年,我国塑料模具工业有了很大发展,注塑模具制品的种类越来越多,在未来的模具市场中,塑料模具具发展速度将高于其它模具,在模具行业中的比例将逐步提高。在电子、汽车、家电、玩具等产品中,60%~100%的零部件,都要依靠模具成形。用模具生产制件所表现出来的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比拟的。通过本课题的设计,应使我们在下述基本能力上得到培养和锻炼:1)塑料管件制品的设计及成型工艺的选择;2)一般塑料管件制品成型模具的设计能力;3)塑料制品的质量分析及工艺改进、塑料模具具结构改进设计的能力;4)了解模具设计的常用商业软件以及同实际设计的结合。使个人能力得到全面提高,以适应今后的工作。


内容简介:
毕业设计(论文)中期报告题目: 玩具照相机零件模具设计系 (部): 机电信息系 专 业: 机械设计制造及其自动化 班 级: 学 生: 学 号: 指导教师: 2013 年 3 月 18 日1、设计(论文)进展状况1.1、完成与课题相关的英文资料的翻译。1.2、分析了玩具照相机零件的结构,测绘了零件的 CAD 和 Pro/E 图。1.3、确定零件的分形面和模具的侧抽芯机构、脱模机构、浇注系统,绘制了玩具照相机零件支架的模具装配示意图。1.4、进行了侧抽芯机构、导向机构、顶出机构、定距分型机构、浇注系统、模板厚度、型腔尺寸相关计算。 2、存在问题及解决措施问题:1. 进料口形式的设计解决措施:自己查阅相关的设计手册、书籍、电子资料,询问老师浇口采用个点浇口。2. 导轨结构设计和它的调隙方式解决措施:自己查阅相关的设计手册、书籍、电子资料,询问老师采用活动滑块用螺钉和销钉连接和定位方便调节滑动间隙。3. 顶出距离的确定 解决措施:自己查阅相关的设计手册、书籍、电子资料,询问老师顶出距离的概念,是指从分型面到塑件最底端的距离而并非塑件的整个高度。4. 冷却水道的设计解决措施:自己查阅相关的设计手册、书籍、电子资料,询问老师和同学在模板上打冷却液孔道然后根据需要在孔道上装密封螺钉改变冷却液的流向。5. 三视图的设计解决措施:自己查阅相关的设计手册、书籍、电子资料,询问老师主视图要尽可能剖出塑件的最大面并剖出浇注系统的位置及侧抽芯机构;左视图要表达出定距分型机构、导向机构及顶出机构;俯视图主要表达出型腔位置、壁厚及塑件在型腔中的位置。3、后期工作安排3.1、继续进行相关计算,根据计算结果校核注塑机和模具的结构尺寸、安装尺寸,调整相关结构和尺寸确定最终装配图和模具零件结构和尺寸。 第十一周3.2、绘制模具装配图、零件图。 第十二周3.3、对模具典型零件的选材及热处理工艺路线分析,对于设计中典型模具零件编制零件制造工艺规程卡片。 第十三周3.4、对设计方案和设计结果要进行经济分析和环保分析、编写设计论文 15000字以上。第十四到十五周3.5、将论文、图纸交老师查阅。 第十六周 3.6、准备终期答辩。 第十八周指导教师签字:年 月 日 五、所在系审查意见:系主管领导: 年 月 日毕业设计(论文)开题报告题目:玩具照相机零件模具设计系 (部): 机电信息系 专 业: 机械设计制造及其自动化 班 级: 学 生: 学 号: 指导教师: 2012 年 12 月 21 日1、毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)1.1、背景及意义:近几年,我国塑料模工业有了很大发展,注塑模具制品的种类越来越多,在未来的模具市场中,塑料模具发展速度将高于其它模具,在模具行业中的比例将逐步提高。在电子、汽车、家电、玩具等产品中,60%-100%的零部件,都要依靠模具成形。用模具生产制件所表现出来的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比拟塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据有关方面预测,模具市场的总体趋势是平稳向上的,在未来的模具市场中,塑料模具的发展速度将高于其它模具,在模具行业中的比例将逐步提高。随着塑料工业的不断发展,对塑料模具提出越来越高的要求是正常的,因此,精密、大型、复杂、长寿命塑料模具的发展将高于总量发展速度。同时,由于近年来进口模具中,精密、大型、复杂、长寿命模具占多数,所以,从减少进口、提高国产化率角度出发,这类高档模具在市场上的份额也将逐步增大。该课题的主要设计意义在于掌握塑料模具设计的大体思路,懂得如何着手分析和考虑问题,能自己独立的设计出一套完整的模具,且能将它应用于实际生产。1.2、国内外发展情况: 1.2.1、国内方面: 80 年代以来,在国家产业政策和与之配套的一系列国家经济政策的支持和引导下,我国模具工业发展迅速,年均增速均为 13%,在未来的模具市场中,塑料管件在模具总量中的比例还将逐步提高。 经过半个世纪的发展,模具水平有了较大提高。在塑料管件模具方面已能生产 19 万吨,上规模,高水平的企业越来越多!由于他的抗腐蚀、廉价等优秀品质,被应用于我国现代化建设的各个领域。精密塑料模具方面,已能生产医疗塑料件模具、多型腔小模数齿轮模具及塑封模具。所生产的这类塑件的尺寸精度、同轴度、跳动等要求都达到了国外同类产品的水平。还能生产厚度仅为0.08mm 的一模两腔的航空杯模具和难度较高的塑料门窗挤出模等等。注塑模型腔制造精度可达 0.02mm0.05mm,表面粗糙度 Ra0.2m,模具质量、寿命明显提高了,非淬火钢模寿命可达 1030 万次,淬火钢模达 501000 万次,交货期较以前缩短,但和国外相比仍有较大差距。1.2.2、国外方面: 我国模具生产厂中多数是自产自配的工模具车间(分第 1 页厂),自产自配比例高达 60%左右,而国外模具超过 70%属商品模具。专业模具厂大多是“大而全”、“小而全”的组织形式,而国外大多是“小而专”、“小而精”。国内大型、精密、复杂、长寿命的模具占总量比例不足 30%,而国外在 50%以上。2004 年,我国模具进出口之比为 3.71,进出口相抵后的净进口额达 13.2 亿美元,为世界模具净进口量最大的国家。2、本课题研究的主要内容和拟采用的研究方案、研究方法或措施2.1、主要内容:(1) 对塑件进行实体测绘,并完成基本参数的计算及注射机的选用; (2) 确定模具类型及结构,完成模具的结构草图的绘制; (3) 运用 Pro/E 等工具软件辅助设计完成模具整体结构 ; (4) 对模具工作部分尺寸及公差进行设计计算; (5) 对模具典型零件需进行选材及热处理工艺路线分析; (6) 对设计方案和设计结果进行经济分析和环保分析; (7) 绘制模具零件图及装配图; (8) 对模具结构进行三维剖析,输出模具开合结构图; (9)编写设计说明书。2.2、 研究方案:通过对塑件的结构的分析,必须用侧抽芯机构才能实现设计要求。并且初步拟定了两个模具结构方案。方案(1)以塑件断面轮廓最大处为分型面,用斜导柱双向侧抽芯,脱模时塑件留在动模上,用顶杆实现脱模。采用点浇口的形式,由于采用点浇口,冷凝快,成型周期短,生产率高,可显著提高塑件表面质量,并且不影响零件的外观和使用性能。方案(2)以塑件断面轮廓最大处为分型面,采用斜导柱三向侧抽芯,用顶杆实现脱模。采用点浇口的形式。两个方案的比较:方案(2)采用三向侧抽芯,其中一个侧抽芯放在了定模上,增加了脱模困难。经过以上两个方案的综合比较,决定采用方案(1)来实现洗衣机支架注塑模设计。2.3、 研究方法、措施:本设计题目涉及目标均为工程实际零件,通过对塑件的实体测绘,完成基本参数的采集,然后运用塑料模具设计、塑料成型工艺等知识,指导学生利用 Pro/E 软件完成模具结构的设计,并进行相关的校核计算,完成包括选材热处理、制造工艺规程、可行性分析等工作。本设计旨在锻炼学生在专业技术应用能力上达到培养目标的基本要求,在塑料成型工艺与塑料模具设计技术方面得到全面提高,并受到模具设计工程师的基本训练。3、本课题研究的重点及难点,前期已开展工作3.1、 重点及难点:本课题研究的重点是模具总体结构的设计优化选择,应用相关软件进行零件图和装配图绘制,点浇口、顶杆机构、注射机的选择,以及对模具结构进行三维剖析输出开合模具结构图。难点在于抽芯机构的设计和总体方案的优化选择,以及模具三维结构剖析和开合模具图输出。3.2、 前期工作:(1)查阅了相关专业资料为设计做好准备;(2)进行了模具结构的分析,拟订了两套备选结构方案。3 、完成本课题的工作方案及进度计划(按周次填写)12 周:熟悉课题,根据老师给的资料运用 Auto CAD、Pro/E 软件绘制塑件 3D图,翻译外文资料。 34 周:确定模具类型及结构,绘制模具结构草图,准备开题答辩。 58 周:对模具工作部分尺寸及公差进行设计计算,并运用 Pro/E 辅助设计完成部分模具零件,准备中期答辩。 914 周:运用 Pro/E 完成模具整体结构 3D 图,完成模具零件的选材、工艺规程的编制、装配图及零件图的 绘制等工作。1518 周:对所有图纸进行校核,编写设计说明书,所有资料提请指导教师检查,准备毕业答辩。参考文献1 中国机械工程学会,中国模具设计大典编委会.中国模具设计大典.江西:江西科学技术出版社.,20032 黄毅宏,李明辉.模具制造工艺.北京:机械工业出版设,20073 贺斌,田福祥,熊艳.方罩壳注塑模设计.工程塑料应用. 200, 3(26):53544 中国工程材料编委会.中国工程材料.北京:化学工业出版社,20065 叶长青.影视盒面盖注塑模具设计.模具技术,2008,1:25266 李秦蕊.塑料模具设计.第 4 版.西安:西北工业大学出版社.20067 王辉. 注塑成型经济性智能评估理论与系统研究.博士学位论文.上海:上海交通大学.20088 施昌荣薄.壁型腔注塑模温度场的分析研究.硕士学位论文.广东:华南理工大学.20029 明文彬.注射充模阶段喷泉流动的研究.硕士学位论文.广东:华南理工大学.200010 孙希威.注塑模具机械加工成本报价系统研究.硕士学位论文.哈尔滨:哈尔滨工业大学.200011 王振飞.注塑模流动平衡的研究.硕士学位论文.郑州:郑州工业大学.200012 王建注.塑模拟分析及热流道的选用.硕士学位论文.天津:天津大学.200213 杨老记主编. AutoCAD2004(中文版)工程制图实用教程.北京:机械工业出版社,200414 钱应平,王劲青,刘小鹏. 多元多向抽芯塑料盒注射模具设计与分析. 塑料工业, 2004.6(6) 32.2715胡 蓉主编 . Pro/E 在塑料模具设计中的应用. 机械工程与自动化,第 1 期(总第128 期)2005 2 16 Andreas N.J. Sprrer.Controlling Morphology of Injection Molded Structural Foams by Mold Design and Processing Parameters. EI,2007 43(4):31333017 Randy M. McCormick, Robert J. Nelson, M. Goretty Alonso-Amigo. Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates.EI,1997, 69:2626-2630I18 Hualin YANG. Automation Technology of Injection Mold Design Based on Case-based Reasoning.北京:机械工程学报,2008.10.288:12五、指导教师意见(对课题的深度、广度及工作量的意见)指导教师: 年 月 日 六、所在系审查意见:系主管领导: 年 月 日参考文献1 中国机械工程学会,中国模具设计大典编委会.中国模具设计大典.江西:江西科学技术出版社.,20032 黄毅宏,李明辉.模具制造工艺.北京:机械工业出版设,20073 贺斌,田福祥,熊艳.方罩壳注塑模设计.工程塑料应用. 200, 3(26):53544 中国工程材料编委会.中国工程材料.北京:化学工业出版社,20065 叶长青.影视盒面盖注塑模具设计.模具技术,2008,1:25266 李秦蕊.塑料模具设计.第 4 版.西安:西北工业大学出版社.20067 王辉. 注塑成型经济性智能评估理论与系统研究.博士学位论文.上海:上海交通大学.20088 施昌荣薄.壁型腔注塑模温度场的分析研究.硕士学位论文.广东:华南理工大学.20029 明文彬.注射充模阶段喷泉流动的研究.硕士学位论文.广东:华南理工大学.200010 孙希威.注塑模具机械加工成本报价系统研究.硕士学位论文.哈尔滨:哈尔滨工业大学.200011 王振飞.注塑模流动平衡的研究.硕士学位论文.郑州:郑州工业大学.200012 王建注.塑模拟分析及热流道的选用.硕士学位论文.天津:天津大学.200213 杨老记主编. AutoCAD2004(中文版)工程制图实用教程.北京:机械工业出版社,200414 钱应平,王劲青,刘小鹏. 多元多向抽芯塑料盒注射模具设计与分析. 塑料工业, 2004.6(6) 32.2715胡 蓉主编 . Pro/E 在塑料模具设计中的应用. 机械工程与自动化,第 1 期(总第128 期)2005 2 16 Andreas N.J. Sprrer.Controlling Morphology of Injection Molded Structural Foams by Mold Design and Processing Parameters. EI,2007 43(4):31333017 Randy M. McCormick, Robert J. Nelson, M. Goretty Alonso-Amigo. Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates.EI,1997, 69:2626-2630I18 Hualin YANG. Automation Technology of Injection Mold Design Based on Case-based Reasoning.北京:机械工程学报,2008.10.288:12International Journal of Automotive Technology, Vol. 13, No. 2, pp. 273277 (2012)DOI 10.1007/s1223901200245Copyright 2012 KSAE/ 06311pISSN 12299138/ eISSN 1976-3832273DESIGN OPTIMIZATION OF AN INJECTION MOLDFOR MINIMIZING TEMPERATURE DEVIATIONJ.-H. CHOI1), S.-H. CHOI1), D. PARK2), C.-H. PARK2), B.-O. RHEE1)*and D.-H. CHOI2)1)Graduate School of Mechanical Engineering, Ajou University, Gyeonggi 443-740, Korea2)Graduate School of Mechanical Engineering, Hanynag University, Seoul 133-791, Korea(Received 24 January 2011; Revised 15 June 2011; Accepted 17 June 2011)ABSTRACTThe quality of an injection molded part is largely affected by the mold cooling. Consequently, this makes itnecessary to optimize the mold cooling circuit when designing the part but prior to designing the mold. Various approachesof optimizing the mold cooling circuit have been proposed previously. In this work, optimization of the mold cooling circuitwas automated by a commercial process integration and design optimization tool called Process Integration, Automation andOptimization (PIAnO), which is often used for large automotive parts such as bumpers and instrument panels. The coolingchannels and baffle tubes were located on the offset profile equidistant from the part surface. The locations of the coolingchannels and the baffle tubes were automatically generated and input into the mold cooling computer-aided engineeringprogram, Autodesk Moldflow Insight 2010. The objective function was the deviation of the mold surface temperature froma given design temperature. Design variables in the optimization were the depths, distances and diameters of the coolingchannels and the baffle tubes. For a more practical analysis, the pressure drop and temperature drop were considered thelimited values. Optimization was performed using the progressive quadratic response surface method. The optimizationresulted in a more uniform temperature distribution when compared to the initial design, and utilizing the proposedoptimization method, a satisfactory solution could be made at a lower cost. KEY WORDS : Injection molding, Cooling channel, Cooling analysis, PQRSM, Design optimization1. INTRODUCTIONThe cooling stage is the longest stage during the cycle timeof the injection molding process. Therefore, the mosteffective method to reduce the cycle time is to reduce thecooling time. The cooling time is fundamentally determinedby the part thickness and mold temperature, which creates acooling time limitation. If the mold temperature and partthickness are uniform over a whole part, the cooling time isnot a concern; however, non-uniform part thickness andmold temperature distribution lengthen the overall coolingtime. A longer cooling time means poor temperatureuniformity, which can cause the part to warp. This isespecially true for large products, such as automotivebumpers and instrument panels. It is for these types of partsthat temperature uniformity becomes the most importantfactor in mold design.We developed an automated optimization of the coolingcircuit for an early part design in order to check the designvalidity. Usually the early part design is checked by thefiling/packing and warpage analyses without a coolinganalysis. This is because the assumption is that the moldtemperature is uniform, which is not actually true.Providing a rapidly optimized cooling circuit for thedesigned part would help part designers correct their design(Koresawa and Suzuki, 1999).The optimization was designed to minimize the parttemperature deviation using design variables such as thediameters and distances of the cooling channels and baffletubes and the depths of the part from the mold surface of thecooling channels and baffle tubes. A commercial computer-aided engineering (CAE) tool, Autodesk Moldflow Insight,was used for the cooling analysis. We successfully obtainedan optimized cooling circuit in a time much shorter thancan be achieved in a manual design. In order to develop theautomated optimization of the cooling circuit for thepractical mold design, practical design parameters such asthe pressure drop limit and the coolant temperature risewere considered in the optimization.The performance of the optimization technique can beaffected by numerical noise in the responses. To find anoptimum solution effectively when numerical noise exists,we performed an optimization by applying a regression-based sequential approximate optimizer known as theProgressive Quadratic Response Surface Method (PQRSM)(Hong et al., 2000), which was part of a commercialprocess integration and design optimization (PIDO) toolknown as the Process Integration, Automation andOptimization (PIAnO) (FRAMAX, 2009). *Corresponding author. e-mail: rhexajou.ac.kr274 J.-H. CHOI et al.2. MODEL AND CHANNEL CONFIGURATION2.1. Model ConfigurationThe model used for the optimization and CAE analysis wasan automotive front bumper (FB). The size of the part was1,800600 mm, the element type was triangular and thenumber of elements in the model was approximately26,000, with an average aspect ratio of 1.5. The model isshown in Figure 1.2.2. Cooling Channel ConfigurationThe cooling circuit for the automotive bumper mold istypically designed to have a horizontal plane of linecooling channels and to install baffle tubes from the linecooling channels. However, in this design, unnecessarilylong baffle tubes attached at a line cooling channel maycause a high pressure drop in the cooling channel. The linecooling channels may not contribute to mold cooling due totheir large distance from the part surface. In order toimprove the design, the line cooling channels were locatedalong the offset profile of the part surface as shown inFigure 2. The end points of the baffle tubes were alsolocated on the offset profile along a line cooling channel.Either the line cooling channels or baffle tubes werelocated on the offset profiles with equal arc distancesbetween them.3. FORMULATION3.1. Design ConstraintsThe limitation of the pressure drop and the temperature risebetween the inlet and outlet of cooling channel should alsobe considered in the design of the mold cooling circuit. Ahigh pressure drop usually occurs in a needlessly longcooling circuit. In a long cooling circuit, the flow rate ofcoolant is low, which results in a high mold temperatureand a high temperature rise at the outlet. The design defectcould eventually be found in the cooling analysis; however,the optimization is already time consuming, so it is better toinstead apply the limits as constraints in the optimization. In this work we assumed that 4 line cooling channelswere connected in series as a cluster, as shown in Figure 3.Clusters are connected in parallel by a manifold. Usually,the maximum pressure drop in a cluster is limited to 200kPa, and the maximum temperature rise at the outlet is 5oC(Menges et al., 2001). In the cooling analysis, each linecooling channel is regarded as a separate independentcircuit for convenience. Because there were 4 line coolingchannels in a circuit, the limits on the pressure drop and thetemperature rise in each line cooling channel were 50 kPaand 1.25oC, respectively. We also have an additionalconstraint due to the fact that the diameter of the baffle tubemust be greater than or equal to the diameter of the coolingchannel because the baffle tube has lower heat removalefficiency than the cooling channel. These three designconstraints can be expressed as Equations (1), (2) and (3) ,(13)where G1is the constraint on pressure drop, G2is theconstraint on temperature rise, and G3represents thesubtraction of the diameter of the baffle tube from thediameter of the cooling channel.3.2. Design VariablesIn this work, the diameters, distances and depths of the linecooling channels and baffle tubes were chosen as designvariables for optimization. The total number of designvariables was 6 as shown in Table 1. Typically, thediameters of the cooling channels and baffle tubes aredetermined by the mold designer according to their rule of0 Pa G150000 pa0 CoG21.2 CoG30 mmFigure 1. Finite element model of the product used for theoptimization.Figure 2. Configuration of cooling channels located alongthe offset profiles.Figure 3. Clusters consisting of 4 cooling channels withbaffle tubes.DESIGN OPTIMIZATION OF AN INJECTION MOLD FOR MINIMIZING TEMPERATURE DEVIATION 275thumb (Rhee et al., 2010). However, it has been examinedin great detail among the mold designers. Table 1 showsthe design variables with their ranges and initial values.The minimum values for the cooling channel distance,baffle distance and baffle depth were determined by theconstraints of the machining requirement. The maximumvalues of cooling channel distance and baffle distance weredetermined by the empirical maximum obtained from themold designers. The baffle distance was a discrete variabledue to a restriction in the automated use of the CAEsoftware. In this work, the baffle distances for optimizationwere 60, 90 and 120 mm.3.3. Objective FunctionA principal purpose of the mold cooling circuitoptimization is to achieve uniform temperature distributionover the part. The uniform temperature distribution meansthat the temperature deviation caused by the coolingchannels is minimized, as shown in Figure 4. The objectivefunction in the optimization was the standard deviation ofpart temperature as shown in Equation (4). The parttemperature was an arithmetic average of the upper and thelower surfaces of the mold halves. The mold surfacetemperature was calculated from the finite element of thepart. min , (4)where is the standard deviation of the part temperature, Eiis the temperature of i-th element, Ewis the averagetemperature of the entire triangular elements, and N is thenumber of elements.4. OPTIMIZATION4.1. Parametric StudyIn order to examine the effects of the design variables onthe objective function, pressure drop and temperature rise,parametric studies were carried out. A parametric studywas performed by changing a variable in a certain rangewhile keeping all other variables fixed. Figures 5-7 showthe results of parametric studies for the objective function,pressure drop temperature rise, respectively. In each figure,the x-axis indicates the levels of design variables. Everydesign variable was divided into 11 levels from its lowerbound to its upper bound. -5 and 5 mean the lower andupper bounds, respectively. When examining the temperature deviation, the diameterof the cooling channels shows little influence to theobjective function (see Figure 5.). This result waspredictable because the cooling channel affects the parttemperature to a lesser degree than the baffle tubes in theautomotive bumper mold. The automotive bumper moldhas a deep core so that the mold cooling depends upon thebaffle tubes rather than the cooling channels. Anotherreason of the lack of influence can be that the flow state inthe cooling channel remains turbulent in the range of theparametric study. The cooling channel usually has asmaller diameter than the baffle tube. When the flow in thebaffle tube is kept in the turbulent state, the flow in thecooling channel will be in the turbulent state.The diameters of the baffle tubes show a tangibleinfluence when it increases above a certain value.Increasing of the diameter changes the flow in the tube to alaminar flow state. This is the cause for the lower heattransfer coefficient when compared to the turbulent flowstate. This is why the temperature deviation becomes largerwhen the baffle tube diameter increases.EiEw()2Ni 1=N=Figure 4. Scheme of the temperature field by the coolingchannels.Table 1. Lower and the upper bounds for design variablesand the initial values for the optimization (unit: mm).Description Lower Initial UpperX1Channel diameter 10 30 40X2Baffle diameter 10 30 40X3Channel distance 60 90 120X4Baffle distance 60 60 120X5Channel depth 30 60 90X6Bafle depth 306090Figure 5. Parametric study result of temperature deviation(objective function).276 J.-H. CHOI et al.Among all parameters, the baffle depth shows the largestinfluence on the objective function, as shown in Figure 5.As the baffle depth increases, the objective functionincreases. This means that the deeper location of the baffletubes causes the temperature deviation to increase. Also, itconfirms that the cooling of the automotive bumper molddepends upon the baffle tubes.The diameters of the cooling channels and the baffletubes have the highest influence on the pressure drop in thecooling circuit, while the other variables show littleinfluence (see Figure 6.). As the diameters increase, thepressure drop decreases after a certain value. This is also apredictable result as a larger diameter decreases thepressure drop.The influences of the temperature rise at the outlet areshown in Figure 7. The most influential parameters are thebaffle diameter and the channel distance. The influence ofthe baffle diameter shows the highest values in the rangefrom -1 to 3. In the case of the smaller baffle diameter, thereduced surface area for the heat transfer may cause asmaller temperature rise, while the larger baffle diametermay cause the lower heat transfer coefficient due to thelower flow rate.The increased channel distance means that each coolingchannel takes up a larger area of the part surface with alarger amount of heat removal. This may give a physicalexplanation to why the increase of the temperature riseincreases with channel distance. The fluctuations shown inFigure 7 are supposed to be numerical noise.4.2. Optimization ResultsThe largest increase in the temperature rise (Figure 7) isapproximately 0.15oC. This value is much less than theconstraint. The influence of the variables on thetemperature rise is not tangible.The baffle distance was considered the discrete variablein this work; hence, it was difficult to apply a generaloptimization method. Because there were three values,optimizations were carried out 3 times with the 5 designparameters. The baffle distance was fixed in eachoptimization. Figures 8 and 9 show the temperature deviations as thechannel diameter, x1and the channel distance, x3change by0.1% using the perturbation method around their initialdesign values. From these results we recognized that thevariations in the temperature deviations as x1and x3variedincluded numerical noise. Therefore, we chose PQRSM as the optimizationmethod that could effectively optimize the response withnumerical noise. The PQRSM equipped in a commercialFigure 6. Parametric study result of the pressure drop.Figure 7. Parametric study result of the temperature rise.Figure 8. Variation of the temperature deviation w.r.t. x1observed by using 0.1% perturbation method.Figure 9. Variation of the temperature deviation w.r.t. x3observed by using 0.1% perturbation method.DESIGN OPTIMIZATION OF AN INJECTION MOLD FOR MINIMIZING TEMPERATURE DEVIATION 277PIDO tool, PIAnO, approximates the objective functionand constraints with quadratic functions in the trust region,and it sequentially moves and reduces the trust region untilit finds the optimum solution.The results of the optimization using the PQRSM areshown in Table 2. Baseline represents the standardcondition before applying the optimization. After theoptimizations were carried out for the 3 cases of the baffledistance (x4), the lowest temperature deviation wasobtained in the case of a baffle distance of 60 mm.Therefore we conclude that a baffle distance of 60 mm isour optimized result.At this optimized result, the temperature deviation wasreduced by 19.2% compared to that of the baseline designwhile satisfying all other design requirements. Among thedesign variables, the channel diameter, x1, the bafflediameter, x2and the channel distance, x3remained close totheir initial values while the channel depth, x5movedtoward the upper bound and the ba
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:玩具照相机某零件支架注塑模具设计【10张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-10115677.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!